
BNB Side Chain Audit Report
Audit Period: 2022/09/12 - 2022/09/21

Overall Risk: Medium

Project links:

Github https://github.com/node-real/semita-bas-template-bsc/pull/8
https://github.com/node-real/semita-bas-genesis-config/pull/11/

Audit Scope:
In the following, we show the SHA256 hash value of the compressed file used in this audit:

● SHA256 (semita-bas-genesis-config-netmarble_v1.0.zip) =
a330b621805cc412a3d9a503e7cca10bd93601fe9eedb8fa07c07cb5c3d49bbf

● SHA256 (semita-bas-template-bsc-netmarble_v1.0.zip) =
a7f6e03f7cba1ce9baa9b7ab391008d47500abe73022f27eedb1125ddf919e36

We found out the Audit Scope as:

● Semita-bas-genesis-config-netmarble_v1.0

The files in this folder include Genesis smart contracts and scripts for building the genesis
config. By default, BNB Sidechain provides an EVM execution environment with a predefined
set of system smart contracts for platform operation. We mainly audited the smart contract part,
here it’s some BNB Sidechain-defined smart contracts:

No. Path FileName File Hash(SHA-256) Verdict Details

1 contracts ChainConfig.sol c3be0557947f8e8af0840d62
a9f1491158d919ac3fbc8214
29ac5a71786a42eb

Informational [I01]
[I02]
[I03]
[Q01]

2 DeployerProxy.
sol

ce4331ec3d14841d5075a75
3e8518a29fde7635fd40fb71
966bdd9ec4d63ef75

Passed

3 Governance.sol 776505f816a9c4cf74075b1e
a088db39caa61b5c50cd12b

Informational [I01]
[Q01]

1

https://github.com/node-real/semita-bas-template-bsc/pull/8
https://github.com/node-real/semita-bas-genesis-config/pull/11/

7afabfab8f9722440

4 InjectorContext
Holder.sol

59cbc8adae75619c477c624
9142c5771a928e1301b1fe91
03c716c15653c9928

Passed

5 Reserve.sol bb487f38737d07a04e87264
b5899c94b651a93cc702b0d
79f2acbd932aab52a2

Passed

6 Reward.sol 1d3f541196183f6ba3a73ec4
9afd70d0fa981465e1a2f1a2
3208938883e4cbab

Informational [I01]
[Q05]

7 RuntimeProxy.s
ol

fd40ac5d90fcb9ef807e2ce72
688604be5d9c9a435ab6664
84c9e1c592666342

Passed

8 RuntimeUpgrad
e.sol

407c9b4c24573cfe284a5719
4cede8e0b1b164a9f292ad60
6a99159586f0d862

Informational [I01]

9 SlashingIndicat
or.sol

4572e0dfb21c03bd7153f3ee
787fef46e15edec38f680cb7f
24bdb1b1210dd39

Passed

10 Staking.sol b9f35efd61b4502075a6b3dd
21729fc1c4c22eec21d0eeb3
1632a4054d68f59f

Medium [M01]
[M02]
[I01]
[I02]
[I03]
[I04]
[I05]
[I06]
[I07]
[I08]
[I09]
[Q01]
[Q02]
[Q03]
[Q04]
[Q06]

11 StakingPool.sol 7cd12d26b5f2fa7d913dfd7ff8
4c371b8b401f08e2782be78f

Passed

2

ddc67eb5027a0f

12 SystemReward.
sol

5bd0c2bac7b2402171b073e
d937d78b6dcb6cef25ca41ec
58c368367a557e8de

Informational [I01]

13 TimeLock.sol 3b49fd1d9880b4b9e3a9154f
7530fc1a1cd400af29684595f
594ea078bc868a4

Informational [I01]

14 contracts
/libs

MultiCall.sol 05409ea9d759f56f3521eb0d
80245358d64d240d3e9a19e
b7c0c0de238aa3597

Passed

● Semita-bas-template-bsc-netmarble_v1.0

No. Path FileName File Hash(SHA-256) Verdict Details

1 contracts/ch
eckpointora
cle/contract

oracle.sol 7bacc9643706223fc231c9c5
2a9ddaac05918b2f375a59f2
878b5abda952889d

Passed

We also audited some of the non-contract parts of the BSC Application Sidechain. Since the
BSC Application Sidechain is a fork from the BNB Smart chain, this audit mainly focuses on the
code modification part of this sidechain. The file involved are:

No. Path FileName File Hash(SHA-256) Verdict Details

1 common/sy
stemcontrac
t/

const.go 1d5904e1a07eb9527a99c7c
e23011babf9457eafd008c7a
595fc2923c915152c

Informational [I01]

2 consensus/
parlia/

parlia.go 78a3ea99c2bfd278dd95e91
5b685a92d929b50668a882
2e4b3e7dcba510d8432

Informational [I01]

3 core/vm/ contracts.go 71ab48d3048066f5c5aa299
ea22741bafc67694b705d7e
97d09285a47a5a0fa7

Informational [I01]
[I02]

4 core/vm/ evm.go a11cf85b07a958cc0eb4eb6
a5f5a25560310f0f9a0dd02f
3954a722a9d27ca4f

Informational [I01]
[Q01]

3

5 core/state/ statedb.go 6e11fc9fa4f1f6812a621e623
1ecb1787a815ee4cb299096
587ee0d19b45812a

Informational [I01]

6 core/ state_processo
r.go

57537a74ce0c441322282c0
66211058fb7dcd5fec8bf135
2eecfca51fac6d7ea

Informational [I01]

7 core/ tx_pool.go a515eaab4a08eb42aaa6ef8
c8e2f062b2bf3adbfa825fbfe
e087b40a360f6911

Low [L01]
[I01]

8 eth/ backend.go e52785358d0236a28cd94a
4ec70e48eeed1d7712fa7b0
a144d6553d93aa1e34a

Informational [I01]

9 internal/etha
pi/

api.go 94ccf7c5ca0d54451554b01
14b68f7380b59232b452b56
ae59969b6453d294e7

Informational [I01]

10 miner/ worker.go 81eff6d48d09a8bc66bcf985
a263f406be68006d19d53de
ed1b236772957ef11

Informational [I01]

11 p2p/dnsdisc
/

sync.go 307e979ab5a08fe393124c6
80ba9901382b6d3b42761a
6b8ac7402e3ca32b109

Informational [I01]

12 params/ config.go f595a24bc3cf2595c4c8dc81
5ee06055e8db9854566029
bf2fd8da4ffe11db50

Informational [I01]

13 params/ protocol_para
ms.go

9be1e517e5e7d61aebdc58c
1d18370d724829c14a87eb
62691ecda246fb776a0

Informational [I01]

Note:
1. The analysis of the security is purely based on the smart contracts mentioned in the Audit
Scope.
2. Due to the time limit, the audit team did not do much in-depth research on the
business logic of the project. It is more about discovering issues in the smart contracts
itselves.

4

Semita-bas-genesis-config-netmarble_v1.0

1. ChainConfig.sol

Informational Severity

[I01] Missing Validation Check
In the _setFreeGasAddressAdmin() function, it is called by the Governance address to change
the freeGasAddressAdmin.

Even though there is a check that the new admin should not be the same as the previous
admin, there is no check that the new admin should not be address “0x0”.

Suggestion: Add
require(_freeGasAddressAdmin != address(0));

[I02] Inconsistency for override keywords
Most of the functions implement the override keyword as they are overriding from the interface
contract IChainConfig.sol. However, some functions that override do not implement the override
keyword.
Besides, depending on which compiler version is used, override is no longer necessary from
0.8.8 and above.

Example with override keyword: setUndelegatePeriod()

Example without override keyword: getMinValidatorStakeAmount()

5

Suggestion:
It is better to ensure consistency across all functions.

[I03] Gas Optimization
In the function “_removeFreeGasAddress” assigning the value of “_freeGasAddressList.length”
to a temporary variable and subsequently replacing the usage of “_freeGasAddressList.length”
with the temporary variable will help save gas.

Suggestion: Modify lines 222-225 to
if (position > 0) {

uint256 indexOf = position - 1;
GAListlength = _freeGasAddressList.length
if (GAListlength > 1 && indexOf != GAListlength - 1) {

address lastAddress = _freeGasAddressList[GAListlength -
1];

3. Governance.sol

Informational Severity

[I01] Code Clarity
In this function, getVotingPower() is supposed to return the voting power of an owner’s validator
address.

Thus, _validatorOwnerVotingPowerAt() is called which will get the validator address to
subsequently get its voting power.

6

However, the calling function uses input parameter validator which is misleading as the input
should be validatorOwner.

Suggestion: Modify to
function getVotingPower(address validatorOwner)

6. Reward.sol

Informational Severity

[I01] Missing Non-Zero Check
Non-zero checks are used throughout the codebase (such as in
SystemReward._claimSystemFee()) to prevent the unintentional sending of funds to the 0x0
address. As shown below, In Reward.sol the function burnAndRelease() shows a clear
distinction between funds designated to be burned, and funds allocated to the foundation.

However neither the function burnAndRelease(), nor updateFoundationAddress() have a
non-zero check to ensure that funds allocated to the foundation are not mistakenly burned.

7

8. RuntimeUpgrade.sol

Informational Severity

[I01] Wrong comments
In the deploySystemSmartContract() function (deploy a new logic contract, upgrade), the
comments here are copied from the above function upgradeSystemSmartContract() (upgrade a
proxy to a new logic contract). As such, the comments here are inconsistent with the code.

Suggestion: Change the comments to
// make sure that we’re deploying a new smart contract that does not
have implementation
// make sure the smart contract is not an existing system smart
contract

10. Staking.sol

Medium Severity

[M01] Business Logic
In the deposit() payable function, the _depositFee() payable function is called, where the miner
deposits a fee/mining reward to a particular validator. Hence, the total rewards will be according
to the msg.value.

8

However, in line 822, the currentSnapshot for the validator’s totalRewards += 0, which
essentially has no effect.

Suggestion: To amend the business logic to
currentSnapshot.totalRewards += msg.value;

[M02] Business Logic - Strict Equality
In line 922, there is a strict equality check where a validator is put in jail if his slashesCount ==
felonyThreshold.

9

However, consider this situation where the felonyThreshold is 2 and this particular validator has
1 slashCount. Now, if the felonyThreshold were to be updated to 1 in the ChainConfig.sol
contract. If the _slashValidator function is called now, since the slashesCount is incremented
first, then the check will now be bypassed.
This is because his slashesCount is now 2 and the felonyThreshold is now 1.

What if the slashesCount > _CHAIN_CONFIG_CONTRACT.getFelonyThreshold()? What will
happen? It seems the validator.status will not be changed into the Jail state again. Will the
Governance role call the removeValidator() method to remove that validator manually?

Suggestion:
It is recommended to review the business logic to prevent such a situation from happening.

Informational Severity

[I01] Gas Optimization
In the function _removeValidatorfromActiveList() assigning the value of
_activeValidatorssList.length to a temporary variable and subsequently replacing the usage of
_activeValidatorssList.length with the temporary variable will help save gas.
It is understood that the length of the array iterated across represents the number of validators
on a particular side-chain. Therefore there may possibly be a high amount of iterations, given a
highly decentralized side-chain. Due to BSC having implemented EIP-2929, following the
suggestion, each iteration will save 100 gas.

[I02] Code Clarity
In Staking.sol, there exists a mapping _validatorsMap to map a validator address to the
structure Validator.

10

This mapping is used across several functions such as activateValidator() and
getValidatorFee(), where the parameter used is validatorAddress.

However, in functions like removeValidator(), isValidatorActive() and isValidator() the parameter
used is account:

Suggestion:
Use _validatorsMap[validatorAddress] for consistency.

[I03] Redundant Comments
In the function _delegateTo(), the amount parameter is checked to be more than or equal to the
min staking amount(explained in line 319’s comment). Line 322 is a redundant comment as it
states the same thing and can be removed.

[I04] Wrong Comments
In this function _undelegateFrom(), the goal is to decrease the delegation amount from the
validator. Therefore, the comment at line 387 is supposed to be:
// decrease total delegated amount…

11

1The comments at lines 394-396 are also wrong. They should be:
// if last pending delegate has the same next epoch then its safe to
just decrease total
// staked amount because it can't affect current validator set,
otherwise there are no pending delegations and should create a record
in delegateQueue
// create new record in undelegateQueue with the last epoch
(undelegations are ordered by epoch)

[I05] Inconsistency With Comment
In the _depositFee() function, there is a check in line 782 to check if the validator exists at least.
However, line 780’s comment checks if the validator is active. Therefore, the comment and code
implementation is inconsistent.

12

[I06] Unnecessary Condition
The internal function _redelegateDelegatorRewards() is only called once in this contract by the
redelegateDelegatorFee() function. The last 2 parameters being passed through are true and
false.

As such, the condition for withUndelegates in lines 442 and 443 are redundant and can be
removed.

[I07] Wrong Error Message
The error message within the red box of the _undelegateFrom() internal function is not
reasonable.

13

[I08] Inconsistency Between Function Name And Function Logic

From the function names, the return value of the getDelegatorFee() and
getPendingDelegatorFee() functions only includes DelegatorFee, but in fact, it also includes the
amount of undelegated funds.

14

[I09] Ambiguous Function Name
For the getValidators() function, it will only return validators in the Active status. The validators in
Pending or Jail status will not be included.

Suggestion:
It is recommended to change the function name of getValidators() function to
getActiveValidators() to avoid ambiguity.

12. SystemReward.sol

Informational Severity

[I01] Gas Optimization
In the function _claimSystemFee(), one can save gas by assigning the value of
_distributionShares.length to a temporary variable and subsequently replacing the usage of
_distributionShares.length with the temporary variable.

15

13. SystemReward.sol

Informational Severity

[I01] Missing Non-Zero Check
In the __TimeLock_init_unchained() function, the admin is set to a particular address. This
internal function is called in the Reward.initialize() function. However, there is no check for
address(0) here. This can render the contract useless.

Suggestion:
It is recommended to include check:
require(admin != address(0));

Questions:

[Q01] Across several contracts in the codebase, we noticed that many functions
incorporate the ‘virtual’ keyword. Is there a reason for incorporating that?
Across several contracts like ChainConfig.sol, Staking.sol, and Governance.sol, many functions
have the ‘virtual’ keyword added.

Examples:

16

However, at the moment, It is unclear where they will be overridden. As such, the ‘virtual’
keyword can be removed if unused.

[Q02] In Staking.sol, the validator address is an EOA while the validator owner
should also be an EOA. Does the owner here mean that he controls the validator
address?

17

[Q03] In Staking.sol, the initialize function has a check at the end for balance.
Does this mean the validators need to send enough balance in first before
initialization?
Also, curious if the address(this).balance is BNB or the native sidechain token. Our
understanding is the native sidechain token.

18

[Q04] Certik brought up an issue CON-01, which was only acknowledged.

To avoid this risk, maybe the project team should inform users to process delegates frequently.

[Q05] In Reward.sol, is foundationAddress the Staking.sol contract?

19

[Q06] What’s the meaning of re-delegate to the same validator?

In some other POS projects, delegators re-delegate to a new validator sometimes to avoid
slashing or get higher returns. But here delegators can only re-delegate to the same validator in
the _redelegateDelegatorRewards() method of the Staking.sol, what is the intention of this
design?

semita-bas-template-bsc-netmarble_v1.0

Common Issue

Informational Severity

[I01] Fork Low Version
This side chain is fork version 1.1.8 of the BNB Smart chain. The latest version of the BNB
Smart chain is 1.1.13. Although there is no public vulnerability information, we can see from the
changelog of the BNB Smart chain that a lot of bugs have been fixed, see
https://github.com/bnb-chain/bsc/blob/master/CHANGELOG.md for details.

Therefore, it is recommended to fork the side chain code from the latest version of the BNB
Smart chain code, which will reduce potential bugs.

20

https://github.com/bnb-chain/bsc/blob/master/CHANGELOG.md

3. contracts.go

Informational Severity

[I02] Redundant Code
In the core/vm/contracts.go, in the RunPrecompiledContract() function, there is such a piece of
code:

In terms of function, this is a piece of redundant code. What is the meaning of this code?

7. tx_pool.go

Low Severity

[L01] Inconsistency Between Two Arrays

Within the reset() function of the core/tx_pool.go, we can see in the end it called the
removeGasFree(address) method:

Analyze the function logic of removeGasFree(address), if calling removeGasFree(addr) function,
the input-parameter addr will be deleted from both gasFreeAccounts and accounts. But
throughout the whole code, accounts will not perform deletion operations, so it is believed that
the removeGasFree() operation will cause the account to be out of sync in the two arrays.

21

Questions:

[Q01] For the core/vm/evm.go, In the Line #562, what is the purpose of using
OPCODE STOP to create a contract?

22

