
Paraspace
Security Assessment

December 7, 2022

Prepared for:

Cheng Jiang

Ivan Solomonoff

Paraspace

Prepared by: Tjaden Hess

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Paraspace Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2022 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Paraspace
under the terms of the project statement of work and has been made public at Paraspace’s
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Paraspace Security Assessment
PUBLIC

Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 4

Project Summary 6

Project Goals 7

Project Targets 8

Project Coverage 9

Codebase Maturity Evaluation 10

Summary of Findings 12

Detailed Findings 13

1. Missing negative tests for several assertions 13

2. Use of a magic constant with unclear meaning for the sAPE unstaking incentive 15

Summary of Recommendations 16

A. Vulnerability Categories 17

B. Code Maturity Categories 19

C. Non-Security-Related Findings 21

Trail of Bits 3 Paraspace Security Assessment
PUBLIC

Executive Summary

Engagement Overview
Paraspace engaged Trail of Bits to review the security of its decentralized lending protocol.
From November 28 to December 2, 2022, one consultant conducted a security review of
the client-provided source code, with five person-days of effort. This review is intended to
cover changes that were made to the Paraspace source code after the culmination of our
initial review of the protocol, which began on October 24, 2022, and took seven
person-weeks of effort. Details of the timeline, test targets, and coverage of this additional
week of review are provided in subsequent sections of this report.

Project Scope
Our testing efforts were focused on the identification of flaws that could result in a
compromise of confidentiality, integrity, or availability of the target system. We conducted
this audit with full knowledge of the system, with access to both the source code and
documentation. We performed static and dynamic testing of the target system and its
codebase, using both automated and manual processes. The scope of this review included
the changes made to the Paraspace source code, especially changes to BAYC/APE staking
and liquidation logic.

Summary of Findings
The audit uncovered minor code quality issues and gas inefficiencies. While no significant
flaws were uncovered, the high complexity of the Paraspace codebase warrants significant
caution and more thorough negative unit testing. A summary of the findings is provided
below.

Trail of Bits 4 Paraspace Security Assessment
PUBLIC

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 0

Low 0

Informational 2

Undetermined 0

CATEGORY BREAKDOWN

Category Count

Configuration 1

Testing 1

Trail of Bits 5 Paraspace Security Assessment
PUBLIC

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Mary O'Brien, Project Manager
dan@trailofbits.com mary.obrien@trailofbits.com

The following engineer was associated with this project:

Tjaden Hess, Consultant
tjaden.hess@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

December 2, 2022 Delivery of report draft

December 5, 2022 Final report readout meeting

December 7, 2022 Delivery of final report

Trail of Bits 6 Paraspace Security Assessment
PUBLIC

mailto:dan@trailofbits.com
mailto:mary.obrien@trailofbits.com
mailto:tjaden.hess@trailofbits.com

Project Goals

The engagement was scoped to provide an extension to a previously completed security
review, focusing on new changes to the codebase. In particular, we sought to answer the
following questions:

● Could staked ApeCoins be removed in such a way that causes users to become
undercollateralized?

● Are access controls in place to prevent unauthorized users from unstaking ApeCoins
or taking other users’ tokens?

● Does Paraspace’s test corpus ensure that access control and collateralization checks
remain in place even during active development?

● Are the current reentrancy protections sufficient to prevent attacks?

● Could NFTs be liquidated at unfair prices? Could users liquidate NFTs without going
through the Dutch auction procedure?

Trail of Bits 7 Paraspace Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the following target.

“Para-Space NFT Money Market”

Repository https://github.com/para-space/paraspace-core

Versions dad2e84a668a3c0a772c72ae8e01fb5015d48589

Type Solidity

Platform Ethereum

Trail of Bits 8 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core
https://github.com/para-space/paraspace-core/commit/dad2e84a668a3c0a772c72ae8e01fb5015d48589

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● Manual analysis of the source code, documentation, and test cases

● Static analysis of the source code with Slither and triaging of the results

This audit focused primarily on the APE staking and NFT liquidation functionality. In
particular, the following contracts were reviewed:

● NTokenBAYC

● NTokenMAYC

● NTokenApeStaking

● ApeStakingLogic

● PoolApeStaking

● PTokenSApe

● LiquidationLogic

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. During this project, we were unable to perform comprehensive testing of the
following system elements, which may warrant further review:

● The upgradeability and safety of the pool proxy contract

● Opportunities to manipulate prices

● Rebasing tokens

● Interactions with NFT marketplaces

Trail of Bits 9 Paraspace Security Assessment
PUBLIC

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic We found no issues related to arithmetic. Satisfactory

Auditing The reviewed logic emits appropriate events when
transfers and administrative actions are executed.

Satisfactory

Authentication /
Access Controls

We found no issues in the reviewed components related
to authentication and access controls.

Satisfactory

Complexity
Management

Validation assertions are spread throughout the code,
and unit tests of some of these assertions are missing, as
described in TOB-PARASPACE-1. This makes
understanding and validating interactions between
components difficult.

Moderate

Cryptography
and Key
Management

We found no issues with cryptography and key
management.

Satisfactory

Decentralization The code features several “administrative” roles (e.g.,
“pool admin,” “emergency admin,” and “risk admin”). The
contracts are upgradeable via a proxy mechanism, which
allows the Paraspace team to halt or change the behavior
of the contracts at any time. Centralized off-chain price
oracles are used; a compromised oracle could allow
attackers to drain funds by taking out undercollateralized
loans.

Weak

Trail of Bits 10 Paraspace Security Assessment
PUBLIC

Documentation The project has reasonable documentation describing its
goals and philosophy. However, the project would benefit
from additional documentation describing its internals.
For example, the constant indicated in TOB-PARASPACE-2
does not correspond to any publicly documented value.

Moderate

Front-Running
Resistance

We found no issues related to front-running. Satisfactory

Low-Level
Manipulation

We found no issues related to low-level manipulation. Satisfactory

Testing and
Verification

Test coverage is generally high, but some critical
functionality has no corresponding negative testing, as
described in TOB-PARASPACE-1.

Moderate

Trail of Bits 11 Paraspace Security Assessment
PUBLIC

https://docs.para.space/para-space/para-space/readme

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Missing negative tests for several assertions Testing Informational

2 Use of a magic constant with unclear meaning for
the sAPE unstaking incentive

Configuration Informational

Trail of Bits 12 Paraspace Security Assessment
PUBLIC

Detailed Findings

1. Missing negative tests for several assertions

Severity: Informational Difficulty: High

Type: Testing Finding ID: TOB-PARASPACE-1

Target: test-suites

Description
The Paraspace protocol consists of numerous interacting components, and each operation
is validated by checks that are widely dispersed throughout the codebase. Therefore, a
robust suite of negative test cases is necessary to prevent vulnerabilities from being
introduced if developers unwittingly remove or alter checks during development.

However, a number of checks are present in the codebase without corresponding test
cases. For example, the health factor check in the FlashClaimLogic contract is required
in order to prevent users from extracting collateralized value from NFTs during flash claims,
but there is no unit test to ensure this behavior. Commenting out the lines in figure 1.1
does not cause any test to fail.

86 require(
87 healthFactor > DataTypes.HEALTH_FACTOR_LIQUIDATION_THRESHOLD,
88 Errors.HEALTH_FACTOR_LOWER_THAN_LIQUIDATION_THRESHOLD
89);

Figure 1.1: FlashClaimLogic.sol#86–89

A test that captures the desired behavior could, for example, initiate a flash claim of a BAYC
NFT that is tied to collateralized staked APE (sAPE) and then withdraw the APE directly from
the ApeCoinStaking contract, causing the account’s health factor to fall below 1.

As another example, removing the following lines from the withdrawApeCoin function in
the PoolApeStaking contract demonstrates that no negative test validates this function’s
logic.

73 require(
74 nToken.ownerOf(_nfts[index].tokenId) == msg.sender,
75 Errors.NOT_THE_OWNER
76);

Figure 1.2: PoolApeStaking.sol#73–76

Trail of Bits 13 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/dad2e84a668a3c0a772c72ae8e01fb5015d48589/contracts/protocol/libraries/logic/FlashClaimLogic.sol#L86-L89
https://github.com/para-space/paraspace-core/blob/dad2e84a668a3c0a772c72ae8e01fb5015d48589/contracts/protocol/pool/PoolApeStaking.sol#L73-L76

Exploit Scenario
Alice, a Paraspace developer, refactors the FlashClaimLogic contract and mistakenly
omits the health factor check. Expecting the test suite to catch such errors, she commits
the code, and the new version of the Paraspace contracts becomes vulnerable to
undercollateralization attacks.

Recommendations
Short term, for each require statement in the codebase, ensure that at least one unit test
fails when the assertion is removed.

Long term, consider requiring that Paraspace developers ensure a minimum amount of
unit test code coverage when they submit new pull requests to the Paraspace contracts,
and that they provide justification for uncovered conditions.

Trail of Bits 14 Paraspace Security Assessment
PUBLIC

2. Use of a magic constant with unclear meaning for the sAPE unstaking
incentive

Severity: Informational Difficulty: High

Type: Configuration Finding ID: TOB-PARASPACE-2

Target: contracts/protocol/tokenization/NTokenApeStaking.sol

Description
If a Paraspace user has a low health factor and is eligible for liquidation, other users may
forcibly unstake any sAPE owned by the undercollateralized user and claim a fraction of the
unstaked coins as a reward. The percentage of unstaked claims that is awarded is defined
inline without a comment, as shown in figure 2.1:

130 function initializeStakingData() internal {
131 ApeStakingLogic.APEStakingParameter
132 storage dataStorage = apeStakingDataStorage();
133 ApeStakingLogic.executeSetUnstakeApeIncentive(dataStorage, 30);
134 }

Figure 2.1: NTokenApeStaking.sol#130–134

Because this value is not marked explicitly as a constant in a prominent location and does
not have a comment explaining its meaning, users may misunderstand its nature.

Exploit Scenario
Bob, a Paraspace user, reads the NTokenApeStaking contract and sees that the unstaking
incentive is set to 30. He misinterprets the value, believing it represents a percentage
rather than 1/100th of a percent, and spends undue resources liquidating small sAPE
positions.

Recommendations
Short term, move the constant to the top of the file and add an explanatory comment.

Long term, add user-facing documentation detailing all current incentive rates and similar
parameters.

Trail of Bits 15 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/dad2e84a668a3c0a772c72ae8e01fb5015d48589/contracts/protocol/tokenization/NTokenApeStaking.sol#L130-L134

Summary of Recommendations

The Paraspace decentralized lending protocol is a work in progress with multiple planned
iterations. Trail of Bits recommends that Paraspace address the findings detailed in this
report and take the following additional steps prior to deployment:

● Adopt a testing policy that ensures full code coverage, including negative testing
coverage of all require statements, in order to prevent the introduction of new
bugs (TOB-PARASPACE-1).

● Expand the project’s documentation to include descriptions of the project’s internals
and to comprehensively document protocol parameters (TOB-PARASPACE-2).

Trail of Bits 16 Paraspace Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 17 Paraspace Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 18 Paraspace Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Front-Running
Resistance

The system’s resistance to front-running attacks

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Trail of Bits 19 Paraspace Security Assessment
PUBLIC

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 20 Paraspace Security Assessment
PUBLIC

C. Non-Security-Related Findings

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

● The DefaultReserveInterestRateStrategy contract defines both a
borrowUsageRatio and a supplyUsageRatio variable. These variables contain
the same value, so they could be consolidated:

vars.borrowUsageRatio = vars.totalDebt.rayDiv(

vars.availableLiquidityPlusDebt

);

vars.supplyUsageRatio = vars.totalDebt.rayDiv(

vars.availableLiquidityPlusDebt

);

● In WETHGateway, withdrawETHWithPermit interprets a value of -1 as an
indication that it should withdraw the user’s full balance. However, when the value is
not -1, the contract still makes an unnecessary external call to fetch the user’s
balance. Consider moving the balance call under the conditional to prevent this
unnecessary external call.

uint256 userBalance = pWETH.balanceOf(msg.sender);

uint256 amountToWithdraw = amount;

// if amount is equal to uint(-1), the user wants to redeem everything

if (amount == type(uint256).max) {

amountToWithdraw = userBalance;

}

● The following comment describing the purposes of the bits in
ReserveConfigurationMap.data is incorrect:

struct ReserveConfigurationMap {
...
//bit 152-167 liquidation protocol fee
//bit 168-175 eMode category
//bit 176-211 unbacked mint cap in whole tokens, unbackedMintCap == 0 =>

minting disabled

Trail of Bits 21 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/types/DataTypes.sol#L62-L65

//bit 212-251 debt ceiling for isolation mode with
(ReserveConfiguration::DEBT_CEILING_DECIMALS) decimals

//bit 252-255 unused

uint256 data;
}

As can be seen from the following definitions, the four bits starting at position 168
hold the asset type:

uint256 internal constant ASSET_TYPE_START_BIT_POSITION = 168;
uint256 internal constant IS_DYNAMIC_CONFIGS_START_BIT_POSITION = 172;

● The following comment in LiquidationLogic.sol is incorrect:

* @notice Function to liquidate an ERC721 of a position if its Health Factor
drops below 1. The caller (liquidator)
* covers `liquidationAmount` amount of debt of the user getting liquidated, and
receives
* a proportional tokenId of the `collateralAsset` minus a bonus to cover market
risk

The comment should say something like the following:

* @notice Function to liquidate an ERC721 of a position if its Health Factor
drops below 1. The caller (liquidator)
* covers `liquidationAmount` amount of debt of the user getting liquidated
minus a bonus to cover market risk, and
* receives the tokenId of the `collateralAsset`

● It appears that IncentivesController in the Aave codebase was renamed to
RewardController in the Paraspace codebase. However, the renaming appears to
be incomplete, as shown in the following example:

/**
* @notice Returns the address of the Incentives Controller contract
* @return The address of the Incentives Controller
**/
function getIncentivesController()

external
view
virtual
returns (IRewardController)

{
return _rewardController;

}

Also, note that both RewardController (singular) and RewardsController
(plural) are used in the codebase (though the former seems to be used more).

● PTokens allow self-liquidation, but NTokens do not:

Trail of Bits 22 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/configuration/ReserveConfiguration.sol#L48-L49
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/LiquidationLogic.sol#L359-L361
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/tokenization/base/IncentivizedERC20.sol#L121-L132
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/ValidationLogic.sol#L702-L705

require(
params.liquidator != params.borrower,
Errors.LIQUIDATOR_CAN_NOT_BE_SELF

);

We could find no vulnerabilities associated with allowing self-liquidation.
Nonetheless, Paraspace should consider disabling self-liquidation for PTokens for
consistency.

Trail of Bits 23 Paraspace Security Assessment
PUBLIC

