
Compe��ve Security Assessment

ParaSpace TimeLock

Mar 27th, 2023

Secure3 secure3.io

$

ParaSpace TimeLock Competitive Security Assessment

2

Summary 3

Overview 4

Audit Scope 5

Code Assessment Findings 6

PTL-1:Cache array length before for loop 9

PTL-2:Change freezeAgreement() modifier from public to external 11

PTL-3:Lack of sufficient address checks 12

PTL-4: TimeLock contract is not compactiable with rebase token, such as stETH 13

PTL-5:Miss check in TimeLock::createAgreement() can create useless agreements. 15

PTL-6:Miss emit event for TimeLock::freezeAgreement and TimeLock::freezeAll 19

PTL-7:Missing onERC721Received method in TimeLock contract 21

PTL-8:Missing error message in onlyXToken modifier 24

PTL-9:Missing event record 25

PTL-10:Set a Maximum Threshold for tokenIdsOrAmounts.length 26

PTL-11:TimeLock - Incomplete function, resulting in the loss of user funds in TimeLock contract

claim function

29

PTL-12:TimeLock.claim/claimMoonBirds cannot specify a recipient 31

PTL-13:Unused dummyEventforTypeChain event 37

PTL-14:When users borrow assets, users need to pay the interest incurred while the borrowed assets

are locked in the TimeLock

38

PTL-15: TimeLock cannot handle airdrops 42

PTL-16:immutable parameters without Strict checking in DefaultTimeLockStrategy 44

Disclaimer 49

ParaSpace TimeLock Competitive Security Assessment

3

Summary

This report is prepared for the project to identify vulnerabilities and issues in the smart contract source code. A group of
NDA covered experienced security experts have participated in the Secure3’s Audit Contest to find vulnerabilities and
optimizations. Secure3 team has participated in the contest process as well to provide extra auditing coverage and
scrutiny of the finding submissions.

The comprehensive examination and auditing scope includes:

 • Cross checking contract implementation against functionalities described in the documents and white paper disclosed
by the project owner.

 • Contract Privilege Role Review to provide more clarity on smart contract roles and privilege.

 • Using static analysis tools to analyze smart contracts against common known vulnerabilities patterns.

 • Verify the code base is compliant with the most up-to-date industry standards and security best practices.

 • Comprehensive line-by-line manual code review of the entire codebase by industry experts.

The security assessment resulted in findings that are categorized in four severity levels: Critical, Medium, Low,
Informational. For each of the findings, the report has included recommendations of fix or mitigation for security and best
practices.

ParaSpace TimeLock Competitive Security Assessment

4

Overview

Project Detail

Project Name ParaSpace TimeLock

Platform & Language Solidity

Codebase https://github.com/para-space/paraspace-core/pull/353/
7190a44e0244701f588b353ccbd215e045dd015b
91f948621efe5aa49d6eed2038dfb35b67285de7

Audit Methodology Audit Contest
Business Logic and Code Review
Privileged Roles Review
Static Analysis

Code Vulnerability Review Summary

Vulnerability Level Total Reported Acknowledged Fixed Mitigated Declined

Critical 0 0 0 0 0 0

Medium 3 0 2 1 0 0

Low 4 0 1 3 0 0

Informational 9 0 4 5 0 0

ParaSpace TimeLock Competitive Security Assessment

5

Audit Scope

File Commit Hash

contracts/interfaces/INToken.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/interfaces/IPToken.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/interfaces/IPoolConfigurator.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/interfaces/IPoolCore.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/interfaces/IPoolParameters.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/interfaces/ITimeLock.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/interfaces/ITimeLockStrategy.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/misc/DefaultTimeLockStrategy.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/misc/TimeLock.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/libraries/logic/BorrowLogic.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/libraries/logic/FlashClaimLogic.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/libraries/logic/GenericLogic.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/libraries/logic/LiquidationLogic.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/libraries/logic/MarketplaceLogic.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/libraries/logic/SupplyLogic.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/libraries/types/DataTypes.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/pool/PoolApeStaking.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/pool/PoolConfigurator.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/pool/PoolCore.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/pool/PoolParameters.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/tokenization/NToken.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/tokenization/NTokenApeStaking.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/tokenization/NTokenBAKC.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/tokenization/NTokenMoonBirds.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/tokenization/PToken.sol 7190a44e0244701f588b353ccbd215e045dd015b

contracts/protocol/tokenization/PTokenSApe.sol 7190a44e0244701f588b353ccbd215e045dd015b

ParaSpace TimeLock Competitive Security Assessment

6

contracts/protocol/tokenization/PYieldToken.sol 7190a44e0244701f588b353ccbd215e045dd015b

ParaSpace TimeLock Competitive Security Assessment

7

Code Assessment Findings

ID Name Category Severity Status Contributor

PTL-1 Cache array length before for loop Gas
Optimization

Informational Acknowled
ged

Hupixiong3

PTL-2 Change freezeAgreement() modifier
from public to external

Gas
Optimization

Informational Fixed Hupixiong3

PTL-3 Lack of sufficient address checks Code Style Low Fixed BradMoonU
ESTC

PTL-4 TimeLock contract is not compactiable
with rebase token, such as stETH

Logical Medium Acknowled
ged

comcat

ParaSpace TimeLock Competitive Security Assessment

8

PTL-5 Miss check in
TimeLock::createAgreement() can
create useless agreements.e useless agreements

Logical Low Fixed Hupixiong3,
BradMoonU
ESTC

PTL-6 Miss emit event for
TimeLock::freezeAgreement and
TimeLock::freezeAll

Logical Informational Fixed comcat,
jayphbee,
Xi_Zi

PTL-7 Missing onERC721Received method in
TimeLock contract

Logical Medium Fixed w2ning,
comcat

PTL-8 Missing error message in onlyXToken
modifier

Code Style Informational Fixed Hupixiong3

PTL-9 Missing event record Code Style Informational Fixed Kong7ych3

PTL-10 Set a Maximum Threshold for
tokenIdsOrAmounts.length

Logical Informational Acknowled
ged

Hellobloc

PTL-11 TimeLock - Incomplete function,
resulting in the loss of user funds in
TimeLock contract claim function

Logical Informational Acknowled
ged

Xi_Zi

PTL-12 TimeLock.claim/claimMoonBirds cannot
specify a recipient

Logical Informational Acknowled
ged

thereksfour

PTL-13 Unused dummyEventforTypeChain
event

Code Style Informational Fixed Hupixiong3

PTL-14 When users borrow assets, users need
to pay the interest incurred while the
borrowed assets are locked in the
TimeLock

Logical Medium Acknowled
ged

thereksfour

PTL-15 TimeLock cannot handle airdrops Logical Low Acknowled
ged

thereksfour,
comcat

PTL-16 immutable parameters without Strict
checking in
DefaultTimeLockStrategy

Code Style Low Fixed Kong7ych3,
Xi_Zi,
Hellobloc

ParaSpace TimeLock Competitive Security Assessment

9

PTL-1:Cache array length before for loop

Category Severity Code Reference Status Contributor

Gas Optimization Informational code/contracts/misc/TimeLock.sol
#L138-L144
code/contracts/misc/TimeLock.sol
#L157-L162

Acknowledged Hupixiong3

Code

138: for (uint256 i = 0; i < agreement.tokenIdsOrAmounts.length; i++) {
139: erc721.safeTransferFrom(
140: address(this),
141: agreement.beneficiary,
142: agreement.tokenIdsOrAmounts[i]
143:);
144: }

157: for (uint256 i = 0; i < agreement.tokenIdsOrAmounts.length; i++) {
158: moonBirds.safeTransferWhileNesting(
159: address(this),
160: agreement.beneficiary,
161: agreement.tokenIdsOrAmounts[i]
162:);

Description
Hupixiong3 : In the claim() function, the loop condition check can be optimized for gas by caching the array length
before the loop

Recommendation
Hupixiong3 : Consider below improvement in the TimeLock.claim() function

ParaSpace TimeLock Competitive Security Assessment

10

 uint256 len = agreement.tokenIdsOrAmounts.length;
 for (uint256 i = 0; i < len; i++) {
 erc721.safeTransferFrom(
 address(this),
 agreement.beneficiary,
 agreement.tokenIdsOrAmounts[i]
);

 }

Client Response
The gas saving is insignificant given that the call will likely be for 1 agreement or 1 withdrawal

ParaSpace TimeLock Competitive Security Assessment

11

PTL-2:Change freezeAgreement() modifier from public to
external

Category Severity Code Reference Status Contributor

Gas Optimization Informational code/contracts/misc/TimeLock.sol
#L166-L171

Fixed Hupixiong3

Code

166: function freezeAgreement(uint256 agreementId, bool freeze)
167: public
168: onlyOwner
169: {
170: agreements[agreementId].isFrozen = freeze;
171: }

Description
Hupixiong3 : The function freezeAgreement() is not called by internal functions. external visibility should be preferred to
reduce gas consumption when called.

Recommendation
Hupixiong3 : Use external visibility

Client Response
Fixed

ParaSpace TimeLock Competitive Security Assessment

12

PTL-3:Lack of sufficient address checks

Category Severity Code Reference Status Contributor

Code Style Low code/contracts/protocol/tokenizati
on/NToken.sol#L152-L153
code/contracts/protocol/pool/Pool
Parameters.sol#L170
code/contracts/protocol/pool/Pool
Configurator.sol#L343-L344

Fixed BradMoonUES
TC

Code

152: address target,
153: uint256 tokenId,

170: address newStrategyAddress

343: address asset,
344: address newRateStrategyAddress

Description
BradMoonUESTC : When the address parameter is passed in, there is a lack of sufficient address checks, such as
checking whether the address is a zero address For example, wrong strategy address may result in returning 0 value in
UiPoolDataProvider

Recommendation
BradMoonUESTC : Add zero address check

Client Response
Fixed

ParaSpace TimeLock Competitive Security Assessment

13

PTL-4: TimeLock contract is not compactiable with rebase
token, such as stETH

Category Severity Code Reference Status Contributor

Logical Medium code/contracts/protocol/tokenizati
on/PTokenStETH.sol#L15
code/contracts/protocol/tokenizati
on/PToken.sol#L123
code/contracts/protocol/tokenizati
on/RebasingPToken.sol#L183

Acknowledged comcat

Code

15:contract PTokenStETH is RebasingPToken {

123: timeLock.createAgreement(

183: function _burnScaled(

Description
comcat : stETH is a rebase token, which means that its balance increases with the passage of time. However, when
considering this type of token, the PTokenStETH contract inherits from RebasingPToken, which in turn inherits from
PToken. When calling the PToken.burn function, an agreement is created with a specific amount transferred to the
timelock contract. The receiver of the agreement will have to wait until the release date to claim their assets. However,
when the receiver claims their assets, they can only claim the amount specified in the agreement. This means that any
increase in balance during the lock period cannot be claimed by the user. As a result, the user's claimed stETH balance
will be smaller than the actual amount, resulting in a loss for the user and a gain for the timelock contract.

Recommendation
comcat : To address this issue, it is suggested that for RebasingPToken, the stETH share in the agreement should be
made instead of the actual stETH balance. When the user claims their assets, they can claim back the corresponding
amount of their share.

Client Response

ParaSpace TimeLock Competitive Security Assessment

14

We are aware of this and planning to address it in future releases. for now, security is more important so we will keep it
the way it is.

ParaSpace TimeLock Competitive Security Assessment

15

PTL-5:Miss check in TimeLock::createAgreement() can
create useless agreements.e useless agreements

Category Severity Code Reference Status Contributor

Logical Low code/contracts/misc/TimeLock.sol
#L69-L99
code/contracts/misc/TimeLock.sol
#L69-L100

Fixed Hupixiong3,
BradMoonUES
TC

Code

ParaSpace TimeLock Competitive Security Assessment

16

69: function createAgreement(
70: DataTypes.AssetType assetType,
71: DataTypes.TimeLockActionType actionType,
72: address asset,
73: uint256[] calldata tokenIdsOrAmounts,
74: address beneficiary,
75: uint48 releaseTime
76:) external onlyXToken(asset) returns (uint256) {
77: uint256 agreementId = agreementCount++;
78: agreements[agreementId] = Agreement({
79: assetType: assetType,
80: actionType: actionType,
81: asset: asset,
82: tokenIdsOrAmounts: tokenIdsOrAmounts,
83: beneficiary: beneficiary,
84: releaseTime: releaseTime,
85: isFrozen: false
86: });
87:
88: emit AgreementCreated(
89: agreementId,
90: assetType,
91: actionType,
92: asset,
93: tokenIdsOrAmounts,
94: beneficiary,
95: releaseTime
96:);
97:
98: return agreementId;
99: }
100:

69: function createAgreement(
70: DataTypes.AssetType assetType,
71: DataTypes.TimeLockActionType actionType,
72: address asset,
73: uint256[] calldata tokenIdsOrAmounts,
74: address beneficiary,
75: uint48 releaseTime
76:) external onlyXToken(asset) returns (uint256) {
77: uint256 agreementId = agreementCount++;

ParaSpace TimeLock Competitive Security Assessment

17

78: agreements[agreementId] = Agreement({
79: assetType: assetType,
80: actionType: actionType,
81: asset: asset,
82: tokenIdsOrAmounts: tokenIdsOrAmounts,
83: beneficiary: beneficiary,
84: releaseTime: releaseTime,
85: isFrozen: false
86: });
87:
88: emit AgreementCreated(
89: agreementId,
90: assetType,
91: actionType,
92: asset,
93: tokenIdsOrAmounts,
94: beneficiary,
95: releaseTime
96:);
97:
98: return agreementId;
99: }

Description
Hupixiong3 : In the createAgreement() function, there is a lack of incoming information validation processing, and the
incoming information may be invalid or duplicate.
BradMoonUESTC : The createAgreement function in the TimeLock contract does not have sufficient validation for its
input parameters, including release time, token information, and addresses. While the function includes some validation,
such as requiring the calling address to be an XToken, it should perform more comprehensive checks on the input
parameters to ensure that the contract works as intended and is not vulnerable to attacks.

Recommendation
Hupixiong3 : Adding incoming message validation processing.
BradMoonUESTC : To enhance security, it is recommended to add more input parameter validation to the
createAgreement function. Specifically, the contract should validate that the beneficiary address is not a zero address,
the release time is in the future, the asset address is not a zero address, the asset type is acceptable, and the
tokenIdsOrAmounts array has the appropriate length and contains valid ERC20 token amounts or ERC721 token IDs. It
is essential to ensure that these checks are as comprehensive as possible, so that the contract can function correctly and
protect users' funds against potential attacks.

ParaSpace TimeLock Competitive Security Assessment

18

Client Response
only our xToken will call creating agreement so it’s okay to keep things simple and no over-do checks. additionally,
creating useless agreement is costly and pointless. However, we added minimal checks for extra security.

ParaSpace TimeLock Competitive Security Assessment

19

PTL-6:Miss emit event for TimeLock::freezeAgreement and
TimeLock::freezeAll

Category Severity Code Reference Status Contributor

Logical Informational code/contracts/misc/TimeLock.sol
#L166
code/contracts/misc/TimeLock.sol
#L166-L175
code/contracts/misc/TimeLock.sol
#L173-L176

Fixed comcat,
jayphbee,
Xi_Zi

Code

166: function freezeAgreement(uint256 agreementId, bool freeze)

166: function freezeAgreement(uint256 agreementId, bool freeze)
167: public
168: onlyOwner
169: {
170: agreements[agreementId].isFrozen = freeze;
171: }
172:
173: function freezeAllAgreements(bool freeze) external onlyOwner {
174: frozen = freeze;
175: }

173: function freezeAllAgreements(bool freeze) external onlyOwner {
174: frozen = freeze;
175: }
176:}

Description
comcat : To help off-chain bots monitor the chain status, it is suggested that corresponding events be emitted for
government actions, such as freeAgreement and freezeAllAgreements
jayphbee : Users should be notified that agreements are freezed. So event should be emitted when
freezeAgreement or freezeAllAgreements called.

ParaSpace TimeLock Competitive Security Assessment

20

 function freezeAgreement(uint256 agreementId, bool freeze)
 public
 onlyOwner
 {
 agreements[agreementId].isFrozen = freeze;
 }

 function freezeAllAgreements(bool freeze) external onlyOwner {
 frozen = freeze;
 }

Xi_Zi : The key status of the contract has changed, and it is recommended to add relevant events. The function
freezeAllAgreements can suspend key functions of the contract. It is recommended to add an event to this action

Consider below POC contract

function freezeAllAgreements(bool freeze) external onlyOwner {
 frozen = freeze;//@audit
 }

Recommendation
comcat : add corresponding events.

function freezeAgreement(uint256 agreementId, bool freeze)
 public
 onlyOwner
 {
 agreements[agreementId].isFrozen = freeze;
 emit AgreementFreezed(agreementId, freeze);
 }

 function freezeAllAgreements(bool freeze) external onlyOwner {
 frozen = freeze;
 emit AllAgreementsFreezed(freeze);
 }

jayphbee : Emit event repectively for freezeAggreement and freezeAllAgreements .
Xi_Zi : The function freezeAllAgreements can suspend key functions of the contract. It is recommended to add an event
to this action

Client Response
Fixed

ParaSpace TimeLock Competitive Security Assessment

21

PTL-7:Missing onERC721Received method in TimeLock
contract

Category Severity Code Reference Status Contributor

Logical Medium code/contracts/misc/TimeLock.sol
#L16
code/contracts/protocol/tokenizati
on/NToken.sol#L122
code/contracts/misc/TimeLock.sol
#L176

Fixed w2ning,
comcat

Code

16:contract TimeLock is ITimeLock, OwnableUpgradeable, ReentrancyGuardUpgradeable {

122: IERC721(_ERC721Data.underlyingAsset).safeTransferFrom(

176:}

Description
w2ning : In the _burn method of Ntoken contract, the NFT could be transferred to Timelock contract, but the
Timelock contract lacks the onERC721Received method

ParaSpace TimeLock Competitive Security Assessment

22

if (receiverOfUnderlying != address(this)) {
 // address underlyingAsset = _ERC721Data.underlyingAsset;
 if (timeLockParams.releaseTime != 0) {
 ITimeLock timeLock = POOL.TIME_LOCK();
 timeLock.createAgreement(
 DataTypes.AssetType.ERC721,
 timeLockParams.actionType,
 _ERC721Data.underlyingAsset,
 tokenIds,
 receiverOfUnderlying,
 timeLockParams.releaseTime
);
 receiverOfUnderlying = address(timeLock);
 }

 for (uint256 index = 0; index < tokenIds.length; index++) {
 IERC721(_ERC721Data.underlyingAsset).safeTransferFrom(
 address(this),
 receiverOfUnderlying,
 tokenIds[index]
);
 }

comcat : The timelock contract has been designed to be able to receive all types of tokens, whether they are ERC-20,
ERC-721, or ERC-1155. As an example, the NToken, which is the pToken of ERC721/ERC1155, will transfer its
underlying token to the timelock contract. However, there is currently no onERC721Received/onERC1155Received
interface within the timelock contract. This absence of the required interface could lead to transaction failures and
reversions.

Recommendation
w2ning : Add the onERC721Received method to the timelock contract.

Consider below fix in the TimeLock contract

ParaSpace TimeLock Competitive Security Assessment

23

import "./IERC721Receiver.sol";

function onERC721Received(
 address,
 address,
 uint256,
 bytes memory
) public override returns (bytes4) {
 return this.onERC721Received.selector;
}

comcat : To prevent this, it is recommended to add the corresponding onERC721Received/onERC1155Received
interface to the timelock contract.

Client Response
Fixed

ParaSpace TimeLock Competitive Security Assessment

24

PTL-8:Missing error message in onlyXToken modifier

Category Severity Code Reference Status Contributor

Code Style Informational code/contracts/misc/TimeLock.sol
#L56

Fixed Hupixiong3

Code

56: require(msg.sender == POOL.getReserveXToken(asset));

Description
Hupixiong3 : The modifier onlyXToken missing error message.

Recommendation
Hupixiong3 : Add error message.

Client Response
Fixed

ParaSpace TimeLock Competitive Security Assessment

25

PTL-9:Missing event record

Category Severity Code Reference Status Contributor

Code Style Informational code/contracts/misc/TimeLock.sol
#L170
code/contracts/misc/TimeLock.sol
#L174

Fixed Kong7ych3

Code

170: agreements[agreementId].isFrozen = freeze;

174: frozen = freeze;

Description
Kong7ych3 : In the TimeLock contract, the owner role can suspend/unsuspend the agreements and timelock
respectively through the freezeAgreement and freezeAllAgreements functions, but no event recording is performed.

Recommendation
Kong7ych3 : It is recommended to record events for the modification of sensitive parameters for subsequent community
review or self-examination.

Client Response
Fixed

ParaSpace TimeLock Competitive Security Assessment

26

PTL-10:Set a Maximum Threshold for
tokenIdsOrAmounts.length

Category Severity Code Reference Status Contributor

Logical Informational code/contracts/misc/TimeLock.sol
#L64-L94

Acknowledged Hellobloc

Code

ParaSpace TimeLock Competitive Security Assessment

27

64: function initialize() public initializer {
65: __Ownable_init();
66: __ReentrancyGuard_init();
67: }
68:
69: function createAgreement(
70: DataTypes.AssetType assetType,
71: DataTypes.TimeLockActionType actionType,
72: address asset,
73: uint256[] calldata tokenIdsOrAmounts,
74: address beneficiary,
75: uint48 releaseTime
76:) external onlyXToken(asset) returns (uint256) {
77: uint256 agreementId = agreementCount++;
78: agreements[agreementId] = Agreement({
79: assetType: assetType,
80: actionType: actionType,
81: asset: asset,
82: tokenIdsOrAmounts: tokenIdsOrAmounts,
83: beneficiary: beneficiary,
84: releaseTime: releaseTime,
85: isFrozen: false
86: });
87:
88: emit AgreementCreated(
89: agreementId,
90: assetType,
91: actionType,
92: asset,
93: tokenIdsOrAmounts,
94: beneficiary,

Description
Hellobloc : The time-Lock contract has a claim() operation based on tokenIdsOrAmounts for the retrieval of
the unlocked assets, and in which the tokenIdsOrAmounts are traversed, but there is no check on the length of
tokenIdsOrAmounts .

ParaSpace TimeLock Competitive Security Assessment

28

function claim(uint256[] calldata agreementIds) external nonReentrant {
 ...
 for (uint256 index = 0; index < agreementIds.length; index++) {
 ...
 } else if (agreement.assetType == DataTypes.AssetType.ERC721) {
 IERC721 erc721 = IERC721(agreement.asset);
 for (
 uint256 i = 0;
 i < agreement.tokenIdsOrAmounts.length;
 i++
) {
 erc721.safeTransferFrom(
 ...
);
 }
 }
 }
 }

This may lead to failed transactions not being revert early enough to reduce Gas loss .

Further considering the GasLimit of eth's transactions, the irregular TimeLock call may lead to the
creationAgreement() transaction consuming much less Gas than claim() , which may lead to the permanent
freezing of assets. (Because tokenIdsOrAmounts in claim may cause the transaction to reach GasLimit , while
createAgreement is normal.).

Recommendation
Hellobloc : It is recommended to add a maximum-threshold-check for the tokenIdsOrAmounts.length in
createAgreement .

Further, the same check can be added before calling createAgreement to revert transactions that reach the upper
limit of Gas as early as possible to reduce Gas loss.

Client Response
Good idea in general, However, only our xToken will call creating agreement so it’s okay to keep things simple and no
over-do checks. additionally, creating useless agreement is costly and pointless.

ParaSpace TimeLock Competitive Security Assessment

29

PTL-11:TimeLock - Incomplete function, resulting in the loss of
user funds in TimeLock contract claim function

Category Severity Code Reference Status Contributor

Logical Informational code/contracts/misc/TimeLock.sol
#L128-L147

Acknowledged Xi_Zi

Code

128: function claim(uint256 agreementId) external nonReentrant {
129: Agreement memory agreement = _validateAndDeleteAgreement(agreementId);
130:
131: if (agreement.assetType == DataTypes.AssetType.ERC20) {
132: IERC20(agreement.asset).safeTransfer(
133: agreement.beneficiary,
134: agreement.tokenIdsOrAmounts[0]
135:);
136: } else if (agreement.assetType == DataTypes.AssetType.ERC721) {
137: IERC721 erc721 = IERC721(agreement.asset);
138: for (uint256 i = 0; i < agreement.tokenIdsOrAmounts.length; i++) {
139: erc721.safeTransferFrom(
140: address(this),
141: agreement.beneficiary,
142: agreement.tokenIdsOrAmounts[i]
143:);
144: }
145: }
146: }
147:

Description
Xi_Zi : According to the design document description，TimeLock Contract allows the admin to submit time-locked
agreements for various token types (ERC20, ERC721, and ERC1155). However, in the contract claim function, only
ERC20 and ERC721 tokens are processed but ERC1155 type tokens are not processed, which may cause the user's
ECR1155 type tokens to not be withdrawn, affecting the security of user funds
https://parallelfinance.notion.site/TimeLock-on-ParaSpace-Withdrawals-and-Borrows-
dc0831edc6314ea18f8695a7c40d7da4

ParaSpace TimeLock Competitive Security Assessment

30

function claim(uint256 agreementId) external nonReentrant {
 Agreement memory agreement = _validateAndDeleteAgreement(agreementId);

 if (agreement.assetType == DataTypes.AssetType.ERC20) {
 IERC20(agreement.asset).safeTransfer(
 agreement.beneficiary,
 agreement.tokenIdsOrAmounts[0]
);
 } else if (agreement.assetType == DataTypes.AssetType.ERC721) {
 IERC721 erc721 = IERC721(agreement.asset);
 for (uint256 i = 0; i < agreement.tokenIdsOrAmounts.length; i++) {
 erc721.safeTransferFrom(
 address(this),
 agreement.beneficiary,
 agreement.tokenIdsOrAmounts[i]
);
 }
 }//@audit
 }

Recommendation
Xi_Zi : According to the design document, add the processing of the token of type ERC155 to the function claim.

Client Response
ERC1155 will be implemented in the future. for now, we don’t have a use case for it.

ParaSpace TimeLock Competitive Security Assessment

31

PTL-12:TimeLock.claim/claimMoonBirds cannot specify a
recipient

Category Severity Code Reference Status Contributor

Logical Informational code/contracts/misc/TimeLock.sol
#L128-L164

Acknowledged thereksfour

Code

ParaSpace TimeLock Competitive Security Assessment

32

128: function claim(uint256 agreementId) external nonReentrant {
129: Agreement memory agreement = _validateAndDeleteAgreement(agreementId);
130:
131: if (agreement.assetType == DataTypes.AssetType.ERC20) {
132: IERC20(agreement.asset).safeTransfer(
133: agreement.beneficiary,
134: agreement.tokenIdsOrAmounts[0]
135:);
136: } else if (agreement.assetType == DataTypes.AssetType.ERC721) {
137: IERC721 erc721 = IERC721(agreement.asset);
138: for (uint256 i = 0; i < agreement.tokenIdsOrAmounts.length; i++) {
139: erc721.safeTransferFrom(
140: address(this),
141: agreement.beneficiary,
142: agreement.tokenIdsOrAmounts[i]
143:);
144: }
145: }
146: }
147:
148: function claimMoonBirds(uint256 agreementId) external nonReentrant {
149: Agreement memory agreement = _validateAndDeleteAgreement(agreementId);
150:
151: require(
152: agreement.assetType == DataTypes.AssetType.ERC721,
153: "wrong asset type"
154:);
155:
156: IMoonBird moonBirds = IMoonBird(agreement.asset);
157: for (uint256 i = 0; i < agreement.tokenIdsOrAmounts.length; i++) {
158: moonBirds.safeTransferWhileNesting(
159: address(this),
160: agreement.beneficiary,
161: agreement.tokenIdsOrAmounts[i]
162:);
163: }
164: }

Description
thereksfour : TimeLock.claim/claimMoonBirds is used to claim assets from TimeLock, the issue here is that the contract
only allows the assets to be sent to the beneficiary address and does not allow the claimant to specify the recipient,

ParaSpace TimeLock Competitive Security Assessment

33

which in some extreme cases may result in the user not being able to claim the assets.

 function claim(uint256 agreementId) external nonReentrant {
 Agreement memory agreement = _validateAndDeleteAgreement(agreementId);

 if (agreement.assetType == DataTypes.AssetType.ERC20) {
 IERC20(agreement.asset).safeTransfer(
 agreement.beneficiary,
 agreement.tokenIdsOrAmounts[0]
);
 } else if (agreement.assetType == DataTypes.AssetType.ERC721) {
 IERC721 erc721 = IERC721(agreement.asset);
 for (uint256 i = 0; i < agreement.tokenIdsOrAmounts.length; i++) {
 erc721.safeTransferFrom(
 address(this),
 agreement.beneficiary,
 agreement.tokenIdsOrAmounts[i]
);
 }
 }
 }

 function claimMoonBirds(uint256 agreementId) external nonReentrant {
 Agreement memory agreement = _validateAndDeleteAgreement(agreementId);

 require(
 agreement.assetType == DataTypes.AssetType.ERC721,
 "wrong asset type"
);

 IMoonBird moonBirds = IMoonBird(agreement.asset);
 for (uint256 i = 0; i < agreement.tokenIdsOrAmounts.length; i++) {
 moonBirds.safeTransferWhileNesting(
 address(this),
 agreement.beneficiary,
 agreement.tokenIdsOrAmounts[i]
);
 }
 }

For ERC20 tokens such as USDC, if the beneficiary address is added to the USDC blacklist during the asset lock, these
USDC tokens will not be available for claiming. For ERC721 tokens, if the beneficiary is a smart contract and is upgraded

ParaSpace TimeLock Competitive Security Assessment

34

during the asset lock and does not implement the onerc721received function, then these ERC721 tokens will not be
available for claiming.

Recommendation
thereksfour :

ParaSpace TimeLock Competitive Security Assessment

35

- function claim(uint256 agreementId) external nonReentrant {
+ function claim(uint256 agreementId, address to) external nonReentrant {
 Agreement memory agreement = _validateAndDeleteAgreement(agreementId);

 if (agreement.assetType == DataTypes.AssetType.ERC20) {
 IERC20(agreement.asset).safeTransfer(
- agreement.beneficiary,
+ to,
 agreement.tokenIdsOrAmounts[0]
);
 } else if (agreement.assetType == DataTypes.AssetType.ERC721) {
 IERC721 erc721 = IERC721(agreement.asset);
 for (uint256 i = 0; i < agreement.tokenIdsOrAmounts.length; i++) {
 erc721.safeTransferFrom(
 address(this),
- agreement.beneficiary,
+ to,
 agreement.tokenIdsOrAmounts[i]
);
 }
 }
 }

- function claimMoonBirds(uint256 agreementId) external nonReentrant {
+ function claimMoonBirds(uint256 agreementId, address to) external nonReentrant {

 Agreement memory agreement = _validateAndDeleteAgreement(agreementId);

 require(
 agreement.assetType == DataTypes.AssetType.ERC721,
 "wrong asset type"
);

 IMoonBird moonBirds = IMoonBird(agreement.asset);
 for (uint256 i = 0; i < agreement.tokenIdsOrAmounts.length; i++) {
 moonBirds.safeTransferWhileNesting(
 address(this),
- agreement.beneficiary,
+ to,
 agreement.tokenIdsOrAmounts[i]
);
 }
 }

ParaSpace TimeLock Competitive Security Assessment

36

Client Response
Acknowledged

ParaSpace TimeLock Competitive Security Assessment

37

PTL-13:Unused dummyEventforTypeChain event

Category Severity Code Reference Status Contributor

Code Style Informational code/contracts/protocol/libraries/l
ogic/GenericLogic.sol#L60

Fixed Hupixiong3

Code

60: event dummyEventforTypeChain();

Description
Hupixiong3 : There are unused dummyEventforTypeChain() event in the GenericLogic contract, redundant code that
causes unnecessary gas consumption and makes code maintenance more difficult.

Recommendation
Hupixiong3 : Delete dummyEventforTypeChain() event.

Client Response
Fixed

ParaSpace TimeLock Competitive Security Assessment

38

PTL-14:When users borrow assets, users need to pay the
interest incurred while the borrowed assets are locked in the
TimeLock

Category Severity Code Reference Status Contributor

Logical Medium code/contracts/protocol/libraries/l
ogic/BorrowLogic.sol#L54-L120

Acknowledged thereksfour

Code

ParaSpace TimeLock Competitive Security Assessment

39

54: function executeBorrow(
55: mapping(address => DataTypes.ReserveData) storage reservesData,
56: mapping(uint256 => address) storage reservesList,
57: DataTypes.UserConfigurationMap storage userConfig,
58: DataTypes.ExecuteBorrowParams memory params
59:) public {
60: DataTypes.ReserveData storage reserve = reservesData[params.asset];
61: DataTypes.ReserveCache memory reserveCache = reserve.cache();
62:
63: reserve.updateState(reserveCache);
64:
65: ValidationLogic.validateBorrow(
66: reservesData,
67: reservesList,
68: DataTypes.ValidateBorrowParams({
69: reserveCache: reserveCache,
70: userConfig: userConfig,
71: asset: params.asset,
72: userAddress: params.onBehalfOf,
73: amount: params.amount,
74: reservesCount: params.reservesCount,
75: oracle: params.oracle,
76: priceOracleSentinel: params.priceOracleSentinel
77: })
78:);
79:
80: bool isFirstBorrowing = false;
81:
82: (
83: isFirstBorrowing,
84: reserveCache.nextScaledVariableDebt
85:) = IVariableDebtToken(reserveCache.variableDebtTokenAddress).mint(
86: params.user,
87: params.onBehalfOf,
88: params.amount,
89: reserveCache.nextVariableBorrowIndex
90:);
91:
92: if (isFirstBorrowing) {
93: userConfig.setBorrowing(reserve.id, true);
94: }
95:

ParaSpace TimeLock Competitive Security Assessment

40

96: reserve.updateInterestRates(
97: reserveCache,
98: params.asset,
99: 0,
100: params.releaseUnderlying ? params.amount : 0
101:);
102:
103: if (params.releaseUnderlying) {
104: DataTypes.TimeLockParams memory timeLockParams = GenericLogic
105: .calculateTimeLockParams(
106: reserve,
107: DataTypes.TimeLockFactorParams({
108: assetType: DataTypes.AssetType.ERC20,
109: asset: params.asset,
110: amount: params.amount
111: })
112:);
113: timeLockParams.actionType = DataTypes.TimeLockActionType.BORROW;
114:
115: IPToken(reserveCache.xTokenAddress).transferUnderlyingTo(
116: params.user,
117: params.amount,
118: timeLockParams
119:);
120: }

Description
thereksfour : When users borrow assets, in the executeBorrow function, the assets are sent to TimeLock for locking, and
the user can only claim them after the release time.

ParaSpace TimeLock Competitive Security Assessment

41

 if (params.releaseUnderlying) {
 DataTypes.TimeLockParams memory timeLockParams = GenericLogic
 .calculateTimeLockParams(
 reserve,
 DataTypes.TimeLockFactorParams({
 assetType: DataTypes.AssetType.ERC20,
 asset: params.asset,
 amount: params.amount
 })
);
 timeLockParams.actionType = DataTypes.TimeLockActionType.BORROW;

 IPToken(reserveCache.xTokenAddress).transferUnderlyingTo(
 params.user,
 params.amount,
 timeLockParams
);
 }

The issue here is that the user does not get the assets, but the borrowed assets have already started to accrue interest,
and the user will have to pay for the interest incurred during the lock period.

This will have minimal impact on long term borrowing, but will have a high impact on short term and large amount
borrowing.

Considering the 24-hour lock-in period, if a user wants to borrow an asset and repay it after 48 hours, the user can hold
the asset for a maximum of 24 hours, but the user pays the interest for 48 hours.

Recommendation
thereksfour : Consider rewarding assets locked in TimeLock based on the lock type, lock time, and lock amount, thus
offsetting the user's loss due to the asset lock.

Client Response
This is the intended behaviour. Thanks for the suggestion.

ParaSpace TimeLock Competitive Security Assessment

42

PTL-15: TimeLock cannot handle airdrops

Category Severity Code Reference Status Contributor

Logical Low code/contracts/misc/TimeLock.sol
#L16-L17
code/contracts/misc/TimeLock.sol
#L16

Acknowledged thereksfour,
comcat

Code

16:contract TimeLock is ITimeLock, OwnableUpgradeable, ReentrancyGuardUpgradeable {

16:contract TimeLock is ITimeLock, OwnableUpgradeable, ReentrancyGuardUpgradeable {
17: using GPv2SafeERC20 for IERC20;

Description
thereksfour : When the user withdraws the underlying NFT from the NToken, the NFT is sent to TimeLock for locking
and can only be withdrawn after the release time. The issue here is that airdrops cannot be handled when the NFT is
locked in TimeLock.

1. For push airdrops, the airdrops are sent directly to the holder, the TimeLock contract, and since the TimeLock
contract does not have functions like rescueERC721/rescueERC1155 to withdraw the airdrops from the contract,
these airdrops are locked in the contract.

2. for pull airdrops, the TimeLock contract does not implement a flashclaim-like function to allow users to claim the
airdrops.
comcat : According to the Moonbirds website, holders of Moonbirds NFTs can become eligible for additional
benefits by "nesting." These benefits can include exclusive airdrops and perks, which may be available to all
holders or only those with specific traits.

However, if a user withdraws their Moonbirds NFT, it will be transferred to the timelock contract. If the NFT is then eligible
for an airdrop, the airdropped token will belong to the timelock contract instead of the original owner. The token will also
be locked inside the timelock contract forever, and there will be no way to retrieve it.

Recommendation
thereksfour : Consider implementing rescueERC721/rescueERC1155 and flashclaim functions to handle airdrops
comcat : To address this issue, it is recommended that a "rescue" method be added, which would only be accessible by
the owner. This method would properly handle any airdropped tokens and ensure that they are not considered legitimate
assets stored in the timelock. This would help to limit the power of the "rescue" method and prevent any misuse.

ParaSpace TimeLock Competitive Security Assessment

43

function rescue(address token, uint tokenId, uint amount, address receiver, uint type) onlyOwner
public {
 for (uint i = 0; i < assets.length; i++) {
 require(token != assets[i], "can not withdraw legitimate token");
 }
 if (type == DataTypes.AssetType.ERC20) {
 ...
 } else if (type == DataTypes.AssetType.ERC721) {
 ...
 }

}

Client Response
We will handle in V2

ParaSpace TimeLock Competitive Security Assessment

44

PTL-16:immutable parameters without Strict checking in
DefaultTimeLockStrategy

Category Severity Code Reference Status Contributor

Code Style Low -
code/contracts/misc/DefaultTimeLock
Strategy.sol#L29-L50

code/contracts/misc/DefaultTimeL
ockStrategy.sol#L29-L50
code/contracts/misc/DefaultTimeL
ockStrategy.sol#L31-L52

Fixed Kong7ych3,
Xi_Zi,
Hellobloc

Code

ParaSpace TimeLock Competitive Security Assessment

45

29: constructor(
30: address pool,
31: uint256 minThreshold,
32: uint256 midThreshold,
33: uint48 minWaitTime,
34: uint48 midWaitTime,
35: uint48 maxWaitTime,
36: uint256 maxPoolPeriodRate,
37: uint48 maxPoolPeriodWaitTime,
38: uint256 period
39:) {
40: POOL = pool;
41: MIN_THRESHOLD = minThreshold;
42: MID_THRESHOLD = midThreshold;
43:
44: MIN_WAIT_TIME = minWaitTime;
45: MID_WAIT_TIME = midWaitTime;
46: MAX_WAIT_TIME = maxWaitTime;
47: MAX_POOL_PERIOD_RATE = maxPoolPeriodRate;
48: POOL_PERIOD_RATE_WAIT_TIME = maxPoolPeriodWaitTime;
49: PERIOD = period;
50: }

29: constructor(
30: address pool,
31: uint256 minThreshold,
32: uint256 midThreshold,
33: uint48 minWaitTime,
34: uint48 midWaitTime,
35: uint48 maxWaitTime,
36: uint256 maxPoolPeriodRate,
37: uint48 maxPoolPeriodWaitTime,
38: uint256 period
39:) {
40: POOL = pool;
41: MIN_THRESHOLD = minThreshold;
42: MID_THRESHOLD = midThreshold;
43:
44: MIN_WAIT_TIME = minWaitTime;
45: MID_WAIT_TIME = midWaitTime;
46: MAX_WAIT_TIME = maxWaitTime;
47: MAX_POOL_PERIOD_RATE = maxPoolPeriodRate;

ParaSpace TimeLock Competitive Security Assessment

46

48: POOL_PERIOD_RATE_WAIT_TIME = maxPoolPeriodWaitTime;
49: PERIOD = period;
50: }

31: uint256 minThreshold,
32: uint256 midThreshold,
33: uint48 minWaitTime,
34: uint48 midWaitTime,
35: uint48 maxWaitTime,
36: uint256 maxPoolPeriodRate,
37: uint48 maxPoolPeriodWaitTime,
38: uint256 period
39:) {
40: POOL = pool;
41: MIN_THRESHOLD = minThreshold;
42: MID_THRESHOLD = midThreshold;
43:
44: MIN_WAIT_TIME = minWaitTime;
45: MID_WAIT_TIME = midWaitTime;
46: MAX_WAIT_TIME = maxWaitTime;
47: MAX_POOL_PERIOD_RATE = maxPoolPeriodRate;
48: POOL_PERIOD_RATE_WAIT_TIME = maxPoolPeriodWaitTime;
49: PERIOD = period;
50: }
51:
52: function resetPeriodLimit() internal {

Description
Kong7ych3 : In the DefaultTimeLockStrategy contract, the MIN_THRESHOLD, MID_THRESHOLD, MIN_WAIT_TIME,
MID_WAIT_TIME, MAX_WAIT_TIME, POOL_PERIOD_RATE_WAIT_TIME, PERIOD and POOL parameters are all
immutable. They are only set when the contract is initialized, so it is necessary to check whether the parameters passed
in when the contract is initialized meet expectations. If the parameters passed in are wrong, the contract will be
abandoned.
Xi_Zi : The contract does not verify the initialization of WaitTime and Threshold in order of size. If minWaitTime,
minWaitTime and maxWaitTime are not set according to minWaitTime<minWaitTime<maxWaitTime, minThreshold,
midThreshold is not set in the order of the size of minThreshold<midThreshold, and since the above variables cannot be
modified by related functions after initialization, if the initialization is not verified, once the setting is wrong,
calculateTimeLockParams function result may be calculated incorrectly.

ParaSpace TimeLock Competitive Security Assessment

47

constructor(
 address pool,
 uint256 minThreshold,
 uint256 midThreshold,
 uint48 minWaitTime,
 uint48 midWaitTime,
 uint48 maxWaitTime,
 uint256 maxPoolPeriodRate,
 uint48 maxPoolPeriodWaitTime,
 uint256 period
) {
 POOL = pool;
 MIN_THRESHOLD = minThreshold;//@audit
 MID_THRESHOLD = midThreshold;//@audit

 MIN_WAIT_TIME = minWaitTime;//@audit
 MID_WAIT_TIME = minWaitTime;//@audit
 MAX_WAIT_TIME = maxWaitTime;//@audit
 MAX_POOL_PERIOD_RATE = maxPoolPeriodRate;
 POOL_PERIOD_RATE_WAIT_TIME = maxPoolPeriodWaitTime;
 PERIOD = period;
 }

Hellobloc : The initialization of the releaseTime related parameters is done in the constructor of the
DefaultTimeLockStrategy , which is used to set the releaseTime . the initialization of these parameters is very
important, considering that the releaseTime setting will affect the freezing time of assets .

However, there is no basic-check in the constructor to ensure that the parameters are not incorrectly set to
unreasonable values.

Recommendation
Kong7ych3 : It is recommended to check whether the immutable parameters passed in for initialization meet
expectations.

Consider below fix in the DefaultTimeLockStrategy.constructor() function

ParaSpace TimeLock Competitive Security Assessment

48

 constructor(
 address pool,
 uint256 minThreshold,
 uint256 midThreshold,
 uint48 minWaitTime,
 uint48 midWaitTime,
 uint48 maxWaitTime,
 uint256 maxPoolPeriodRate,
 uint48 maxPoolPeriodWaitTime,
 uint256 period
) {
 // Strict checking of immutable parameters
 require(minThreshold > 0 && midThreshold > minThreshold);
 require(minWaitTime > 0 && midWaitTime > minWaitTime && maxWaitTime > midWaitTime);
 require(pool != address(0) && maxPoolPeriodRate != 0 && maxPoolPeriodWaitTime != 0 && period
!= 0);

 ...
 }

Xi_Zi : It is recommended to verify Threshold and WaitTime when the contract is initialized to ensure that they are
initialized in the correct size order.
Hellobloc : We recommend adding the following checks for releaseTime related parameters.

require(minThreshold > MIN_THRESHOLD && midThreshold > minThreshold && MAX_THRESHOLD >
midThreshold);
require(minWaitTime > MIN_WAIT_TIME && midWaitTime > minWaitTime && maxWaitTime > midWaitTime &&
MAX_WAIT_TIME > maxWaitTime);
require(MAX_POOL_PERIOD_WAIT_TIME > poolPeriodWaitTime);
require(MAX_PERIOD >= period);

Client Response
Fixed

ParaSpace TimeLock Competitive Security Assessment

49

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,
disclaimer and limitation of liability) set forth in the Invoices, or the scope of services, and terms and conditions provided
to you (“Customer” or the “Company”) in connection with the Invoice. This report provided in connection with the services
set forth in the Invoices shall be used by the Company only to the extent permitted under the terms and conditions set
forth in the Invoice. This report may not be transmitted, disclosed, referred to or relied upon by any person for any
purposes, nor may copies be delivered to any other person other than the Company, without Secure3’s prior written
consent in each instance.

This report is not an “endorsement” or “disapproval” of any particular project or team. This report is not an indication of
the economics or value of any “product” or “asset” created by any team or project that contracts Secure3 to perform a
security assessment. This report does not provide any warranty or guarantee of free of bug of codes analyzed, nor do
they provide any indication of the technologies, business model or legal compliancy.

This report should not be used in any way to make decisions around investment or involvement with any particular
project. Instead, it represents an extensive assessing process intending to help our customers increase the quality of
their code and high-level consistency of implementation and business model, while reducing the risk presented by
cryptographic tokens and blockchain technology.

Secure3’s position on the final decisions over blockchain technologies and corresponding associated transactions is that
each company and individual are responsible for their own due diligence and continuous security.

The assessment services provided by Secure3 is subject to dependencies and under continuing development. The
assessment reports could include false positives, false negatives, and other unpredictable results. The services may
access, and depend upon, multiple layers of third-parties.

