
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Para-Space NFT Money Market

Veridise Inc.
January 5, 2023

▶ Prepared For:

Yubo Ruan | Parallel Foundation
parallel.fi

▶ Prepared By:

Jon Stephens
Xiangan He

▶ Contact Us: contact@veridise.com

▶ Version History:

Jan 17, 2023 V1

© 2022 Veridise Inc. All Rights Reserved.

parallel.fi
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 9
4.1 Detailed Description of Bugs . 10

4.1.1 V-PMM-VUL-001: CryptoPunks Theft . 10
4.1.2 V-PMM-VUL-002: Missing Liquidation Asset Validation 11
4.1.3 V-PMM-VUL-003: Health Factor could change after Validation 12
4.1.4 V-PMM-VUL-004: Anyone can pay the core 13
4.1.5 V-PMM-VUL-005: HF Calculation considers Inactive Collateral 14
4.1.6 V-PMM-VUL-006: Cannot rescue ETH 15
4.1.7 V-PMM-VUL-007: MintableIncentivizedERC721 does not implement ERC721

Specification . 16
4.1.8 V-PMM-VUL-008: No Decimals Validation in Oracle 17
4.1.9 V-PMM-VUL-009: Move refund to end of executeLiquidateERC721 . . . 18
4.1.10 V-PMM-VUL-010: Data Overwrite in Proxy 19

Veridise Audit Report: Parallel © 2022 Veridise Inc.

Executive Summary 1
From Dec. 12 to Dec. 24, Parallel engaged Veridise to review the security of their Para-Space
NFT Money Market. The review covered the on-chain contracts that implement the protocol
logic. Veridise conducted the assessment over 4 person-weeks, with 2 engineers reviewing code
over 2 weeks on commit 8026a8a. The auditing strategy involved a tool-assisted analysis of the
source code performed by Veridise engineers as well as extensive manual auditing.

Summary of issues detected. The audit uncovered 10 issues, 1 of which are assessed to be of
high or critical severity by the Veridise auditors. Specifically V-PMM-VUL-001 allows a user to
steal the cryptopunks of any user that has specified that the Punk Gateway may buy the punk.
In addition, the auditors identified one modererate-severity issue that corresponds to missing
validation of the liquidation asset, allowing a user to spend tokens locked in the pool contract.

Code assessment. The Para-Space NFT Money Market is a fork of the AAVE V3 protocol and
shares much of the same infrastructure from that project. Like AAVE, the protocol is a pool-based
lending protocol that enables lenders to provide liquidity to pools and borrowers to borrow
funds from the pools by using collateral. The key difference between the Para-Space NFT Money
Market and AAVE is that Para-Space allows users to borrow against NFTs put up as collateral.
This extension required new reasoning about the supplying, borrowing, and liquidation logic as
well as the introduction of a new coin, the NToken, which users receive upon depositing NFTs
into a reserve. Similar to ATokens in the AAVE protocol, NTokens are minted upon deposit of
an NFT and they can be used as collateral until they are burned/redeemed/liquidated.

Parallel provided the source code for the Para-Space NFT Money Market contracts for review.
A hardhat-based test-suite accompanied the source-code with tests written by the developers.
These tests achieve relatively high coverage of the protocol. In addition, the client provided
documentation describing the intended behavior for the contracts.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Para-Space NFT Money Market 8026a8a Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Dec. 12 - Dec. 24, 2022 Manual & Tools 2 4 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 1 1
Medium-Severity Issues 1 1
Low-Severity Issues 7 1
Warning-Severity Issues 1 0
Informational-Severity Issues 0 0
TOTAL 10 3

Table 2.4: Category Breakdown.

Name Number
Logic Error 3
Validation 2
Theft 1
Specification Error 1
Maintainability 1
Locked Funds 1
Overwritten State 1

Veridise Audit Report: Parallel © 2022 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the on-chain portion of the
Para-Space NFT Money Market defined in the following scope. In our audit, we sought to
answer the following questions:

▶ Are assets properly credited to the correct user?
▶ Is it possible for a user to access an asset they shouldn’t?
▶ Is the pool and NToken properly guarded by reentrancy guards?
▶ Is it possible for the health factor to change without being checked?
▶ Can funds be locked within a contract?
▶ Can a user ever borrow an amount without the appropriate collateral?
▶ Is it possible for a user to avoid liquidation?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found.

Scope. This audit reviewed the on-chain behaviors contained in the following files of the Para-
Space NFT Money Market. As such, Veridise auditors first reviewed the provided documentation
to understand the desired behavior of the protocol as a whole. Then, the auditors inspected the
provided tests to better understand the intended behavior of the provided contracts at a more
granular level. Finally, auditors began a multi-week manual audit of the code assisted by both
static analyzers and automated testing.

In terms of the audit, the following files were in-scope:

▶ paraspace-core/contracts/misc/ERC721OracleWrapper.sol
▶ paraspace-core/contracts/misc/ParaSpaceOracle.sol
▶ paraspace-core/contracts/misc/ProtocolDataProvider.sol
▶ paraspace-core/contracts/protocol/configuration/ACLManager.sol

Veridise Audit Report: Parallel © 2022 Veridise Inc.

6 3 Audit Goals and Scope

▶ paraspace-core/contracts/protocol/configuration/PoolAddressesProvider.sol
▶ paraspace-core/contracts/protocol/configuration/PoolAddressesProviderRegistry.sol
▶ paraspace-core/contracts/protocol/libraries/configuration/ReserveConfiguration.sol
▶ paraspace-core/contracts/protocol/libraries/configuration/UserConfiguration.sol
▶ paraspace-core/contracts/protocol/libraries/logic/BorrowLogic.sol
▶ paraspace-core/contracts/protocol/libraries/logic/FlashClaimLogic.sol
▶ paraspace-core/contracts/protocol/libraries/logic/GenericLogic.sol
▶ paraspace-core/contracts/protocol/libraries/logic/LiquidationLogic.sol
▶ paraspace-core/contracts/protocol/libraries/logic/PoolLogic.sol
▶ paraspace-core/contracts/protocol/libraries/logic/SupplyLogic.sol
▶ paraspace-core/contracts/protocol/libraries/logic/ValidationLogic.sol
▶ paraspace-core/contracts/protocol/pool/PoolCore.sol (was Pool.sol)
▶ paraspace-core/contracts/protocol/pool/PoolParameters.sol (was Pool.sol)
▶ paraspace-core/contracts/protocol/pool/PoolStorage.sol
▶ paraspace-core/contracts/protocol/tokenization/base/MintableIncentivizedERC721.sol
▶ paraspace-core/contracts/protocol/tokenization/NToken.sol
▶ paraspace-core/contracts/protocol/ui/WPunkGateway.sol
▶ paraspace-core/contracts/protocol/ui/WETHGateway.sol

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

© 2022 Veridise Inc. Veridise Audit Report: Parallel

3.3 Classification of Vulnerabilities 7

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

Veridise Audit Report: Parallel © 2022 Veridise Inc.

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-PMM-VUL-001 CryptoPunks Theft High Fixed
V-PMM-VUL-002 Missing Liquidation Asset Validation Medium Fixed
V-PMM-VUL-003 Health Factor could change after Validation Low Open
V-PMM-VUL-004 Anyone can pay the core Low Open
V-PMM-VUL-005 HF Calculation considers Inactive Collateral Low Open
V-PMM-VUL-006 Cannot rescue ETH Low Open
V-PMM-VUL-007 Token does not implement ERC721 Specification Low Intended Behavior
V-PMM-VUL-008 No Decimals Validation in Oracle Low Open
V-PMM-VUL-009 Move refund to end of executeLiquidateERC721 Low Open
V-PMM-VUL-010 Data Overwrite in Proxy Warning Open

Veridise Audit Report: Parallel © 2022 Veridise Inc.

10 4 Vulnerability Report

4.1 Detailed Description of Bugs

4.1.1 V-PMM-VUL-001: CryptoPunks Theft

Severity High Commit 8026a8a
Type Theft Status Fixed
Files WPunkGateway.sol

Functions supplyPunk, acceptBidWithCredit, batchAcceptBidWithCredit

The protocol allows CryptoPunks to be supplied to the pool via a custom interface since these
NFTs do not adhere to the ERC721 specification. When supplying the punks, however, the
WPunkGateway does not check the current owner of the punk. This a malicious user to supply
a punk that they do not own if the owner has given the WPunkGateway the right to buy their
punk.

1 function supplyPunk(

2 DataTypes.ERC721SupplyParams[] calldata punkIndexes,

3 address onBehalfOf,

4 uint16 referralCode

5) external nonReentrant {

6 for (uint256 i = 0; i < punkIndexes.length; i++) {

7 Punk.buyPunk(punkIndexes[i].tokenId);

8 Punk.transferPunk(proxy, punkIndexes[i].tokenId);

9 // gatewayProxy is the sender of this function, not the original gateway

10 WPunk.mint(punkIndexes[i].tokenId);

11 }

12

13 Pool.supplyERC721(

14 address(WPunk),

15 punkIndexes,

16 onBehalfOf,

17 referralCode

18);

19 }

Snippet 4.1: Function that transfers CryptoPunks without checking owner

Impact Since the owner is not checked, Punks could be stolen while in transit to the WPunkGate-
way. For example, a malicious user could front-run the supplyPunk function to steal the
CryptoPunk from the actual owner.

Recommendation Check who owns the CryptoPunk.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 11

4.1.2 V-PMM-VUL-002: Missing Liquidation Asset Validation

Severity Medium Commit 8026a8a
Type Validation Status Fixed
Files LiquidationLogic.sol

Functions _depositETH

The protocol allows a liquidated user’s collateral to be purchased with ETH. When processing
the ETH payment, however, the specified liquidation asset is not checked. If someone specifies a
non-ETH liquidation asset and still provides ETH to the transaction, the _depositETH function
will proceed as if the user is intending to perform the liquidation using ETH while the remainder
of the protocol proceeds to perform the liquidation with respect to the specified asset.

1 function _depositETH(

2 DataTypes.ExecuteLiquidateParams memory params,

3 ExecuteLiquidateLocalVars memory vars

4) internal {

5 if (msg.value == 0) {

6 vars.payer = msg.sender;

7 } else {

8 vars.payer = address(this);

9 IWETH(params.weth).deposit{value: vars.actualLiquidationAmount}();

10 if (msg.value > vars.actualLiquidationAmount) {

11 Address.sendValue(

12 payable(msg.sender),

13 msg.value - vars.actualLiquidationAmount

14);

15 }

16 }

17 }

Snippet 4.2: The _depositETH function which does not check the liquidationAsset

Impact Since _depositETH changes the payer if any ETH is payed along with the transaction,
the user can manipulate the specified payer, allowing them to use any tokens owned by the
pool to perform perform the liquidation. By taking advantage between the differences between
decimals used by different currencies it is possible that someone can perform a liquidation
using almost entirely funds locked in the pool.

Recommendation Validate that the liquidation asset is ETH when msg.value != 0. If the
liquidation asset is not ETH, validate that msg.value == 0

Veridise Audit Report: Parallel © 2022 Veridise Inc.

12 4 Vulnerability Report

4.1.3 V-PMM-VUL-003: Health Factor could change after Validation

Severity Low Commit 8026a8a
Type Logic Error Status Open
Files SupplyLogic.sol

Functions executeWithdrawERC721

Users are allowed to withdraw collateral as long as their health factor remains above the healthy
threshold. After performing the HF validation on a withdraw, however, the reserve may be
disabled as collateral if a previous call indicated that the reserve was empty. Since this disabling
a reserve as collateral can impact the health factor validation, we would recommend that this be
performed before the health factor validation.

1 if (isWithdrawCollateral) {

2 if (userConfig.isBorrowingAny()) {

3 ValidationLogic.validateHFAndLtvERC721(

4 reservesData,

5 reservesList,

6 userConfig,

7 params.asset,

8 params.tokenIds,

9 msg.sender,

10 params.reservesCount,

11 params.oracle

12);

13 }

14

15 if (newCollateralizedBalance == 0) {

16 userConfig.setUsingAsCollateral(reserve.id, false);

17 emit ReserveUsedAsCollateralDisabled(params.asset, msg.sender);

18 }

19 }

Snippet 4.3: Snippet of executeWithdrawERC721 that checks the health factor on a withdraw

Impact If the newCollateralizedBalancevariable were to be stale, by calling setUsingAsCollateral

after the validation step, a user’s health factor could decrease. This could possibly allow a user
to withdraw their collateral while keeping the borrowed funds.

Recommendation Switch the order of validateHFAndLtvERC721 and setUsingAsCollateral

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 13

4.1.4 V-PMM-VUL-004: Anyone can pay the core

Severity Low Commit 8026a8a
Type Logic Error Status Open
Files PoolCore.sol, ParaProxy.sol

Functions receive

The PoolCore contract declares a receive function restricting the ability to send funds to the
pool to only the WETH contract. This receive function will never be invoked though because
a custom proxy is used to implement the pool logic. In particular, this proxy also declares a
receive function that allows anyone to transfer funds to the pool.

1 receive() external payable {

2 require(

3 msg.sender ==

4 address(IPoolAddressesProvider(ADDRESSES_PROVIDER).getWETH()),

5 "Receive not allowed"

6);

7 }

Snippet 4.4: The receive function declared by the PoolCore implementation

Impact Funds could accidentally be sent to the pool, which could then be locked in the pool.

Recommendation If it is intended to restrict the receive functionality, place the logic in the
ParaProxy

Veridise Audit Report: Parallel © 2022 Veridise Inc.

Cannot%20rescue%20ETH%20298735825abb435faa7b9ca53d101288.md

14 4 Vulnerability Report

4.1.5 V-PMM-VUL-005: HF Calculation considers Inactive Collateral

Severity Low Commit 8026a8a
Type Logic Error Status Open
Files GenericLogic.sol

Functions calculateUserAccountData

The protocol uses a computed health factor (HF) to determine if a user is eligible for liquidation.
When performing this calculation, all collateral include those in non-active and paused reserves
are included in the calculation even though collateral in these reserves cannot be liquidated.

Impact If a user has collateral in a reserve that gets marked as inactive or paused, they
can continue make borrows against this collateral without worrying about liquidation as any
liquidation attempt would fail. This could leave the protocol with no way to liquidate the user if
their loan defaults.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 15

4.1.6 V-PMM-VUL-006: Cannot rescue ETH

Severity Low Commit 8026a8a
Type Locked Funds Status Open
Files PoolLogic.sol

Functions executeRescueTokens

It is possible for user to accidentally transfer ownership of tokens to the pool. If they do so, an
admin can intervene to “rescue” the tokens using an api provided by the Pool. This API, however,
currently excludes the ability to rescue ETH that may have accidentally been transferred to the
pool.

1 function executeRescueTokens(

2 DataTypes.AssetType assetType,

3 address token,

4 address to,

5 uint256 amountOrTokenId

6) external {

7 if (assetType == DataTypes.AssetType.ERC20) {

8 IERC20(token).safeTransfer(to, amountOrTokenId);

9 } else if (assetType == DataTypes.AssetType.ERC721) {

10 IERC721(token).safeTransferFrom(address(this), to, amountOrTokenId);

11 }

12 }

Snippet 4.5: The token rescue logic that excludes ETH

Impact Currently ETH that is transferred to the pool will either be locked.

Recommendation Allow admins to rescue locked ETH from the pool.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

16 4 Vulnerability Report

4.1.7 V-PMM-VUL-007: MintableIncentivizedERC721 does not implement ERC721
Specification

Severity Low Commit 8026a8a
Type Specification Error Status Intended Behavior
Files MintableIncentivizedERC721.sol

Functions safeTransferFrom

The MintableIncentivesedERC721 contract does not implement the ERC721 specification because
the safeTransferFrom function does not call onERC721Received.

Impact This can cause an NToken to be locked in a contract that it cannot be recovered from.

Recommendation Implement the ERC721 specification.

Developer Response Due to the potential for re-entrancy the developers have opted not to
call onERC721Received.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 17

4.1.8 V-PMM-VUL-008: No Decimals Validation in Oracle

Severity Low Commit 8026a8a
Type Validation Status Open
Files ParaSpaceOracle.sol

Functions addAssetSources

The ParaSpaceOracle allows admins to add or change the pricing oracles used by the protocol.
When setting the pricing oracles, no validation is performed to ensure that several invariants
assumed by the protocol are maintained.

1 function _setAssetsSources(

2 address[] memory assets,

3 address[] memory sources

4) internal {

5 require(

6 assets.length == sources.length,

7 Errors.INCONSISTENT_PARAMS_LENGTH

8);

9 for (uint256 i = 0; i < assets.length; i++) {

10 require(

11 assets[i] != BASE_CURRENCY,

12 Errors.SET_ORACLE_SOURCE_NOT_ALLOWED

13);

14 assetsSources[assets[i]] = sources[i];

15 emit AssetSourceUpdated(assets[i], sources[i]);

16 }

17 }

Snippet 4.6: The internal function used to overwrite the pricing oracle

Impact Since no validation is performed, an admin could accidentally break one of the
protocol’s assumptions, leaving it open to attack. Such assumptions include:

▶ The source is the pricing oracle for the indicated asset
▶ The source returns a price with respect to ETH
▶ The source uses 18 decimals

Recommendation Perform appropriate validation when setting the oracle sources

Veridise Audit Report: Parallel © 2022 Veridise Inc.

18 4 Vulnerability Report

4.1.9 V-PMM-VUL-009: Move refund to end of executeLiquidateERC721

Severity Low Commit 8026a8a
Type Maintainability Status Open
Files LiquidationLogic.sol

Functions _depositETH

The protocol allows a liquidated user’s collateral to be purchased with ETH. When processing
the payment the protocol will check to determine if the user paid too much and return the
excess using Address.sendValue.

1 function _depositETH(

2 DataTypes.ExecuteLiquidateParams memory params,

3 ExecuteLiquidateLocalVars memory vars

4) internal {

5 if (msg.value == 0) {

6 vars.payer = msg.sender;

7 } else {

8 vars.payer = address(this);

9 IWETH(params.weth).deposit{value: vars.actualLiquidationAmount}();

10 if (msg.value > vars.actualLiquidationAmount) {

11 Address.sendValue(

12 payable(msg.sender),

13 msg.value - vars.actualLiquidationAmount

14);

15 }

16 }

17 }

Snippet 4.7: The _depositETH function that calls sendValue

Impact This api uses a low-level call to transfer the funds though, opening the protocol to
potential reentrancy attacks in the future.

Recommendation The developers should consider moving the refund logic to the end of the
liquidation procedure.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 19

4.1.10 V-PMM-VUL-010: Data Overwrite in Proxy

Severity Warning Commit 8026a8a
Type Overwritten State Status Open
Files ParaProxy.sol

Functions updateImplementation

The ParaSpace protocol uses a custom proxy that allows the functionality of their pool to be
updated in the future. The proxy’s implementation allows it to inherit behavior from different
reference contracts deployed on the blockchain. If the implementation contracts have different
storage layouts though, important values may be overwritten. The developers should therefore
be very careful to validate that the storage layout of new behaviors is consistent with the proxy’s
current storage.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Bugs

	Detailed Description of Bugs
	V-PMM-VUL-001: CryptoPunks Theft
	V-PMM-VUL-002: Missing Liquidation Asset Validation
	V-PMM-VUL-003: Health Factor could change after Validation
	V-PMM-VUL-004: Anyone can pay the core
	V-PMM-VUL-005: HF Calculation considers Inactive Collateral
	V-PMM-VUL-006: Cannot rescue ETH
	V-PMM-VUL-007: MintableIncentivizedERC721 does not implement ERC721 Specification
	V-PMM-VUL-008: No Decimals Validation in Oracle
	V-PMM-VUL-009: Move refund to end of executeLiquidateERC721
	V-PMM-VUL-010: Data Overwrite in Proxy

