
Competitive Security Assessment

ParaSpace cAPE P2

Mar 26th, 2023

Secure3 secure3.io

$

ParaSpace cAPE P2 Competitive Security Assessment

2

Summary 3

Overview 4

Audit Scope 5

Code Assessment Findings 6

PSC-1:Additional yield does not match bufferStakingBalance 8

PSC-2:Did not judge the actual payment reward 9

PSC-3:Potential Reentrancy Attack 11

PSC-4:Unchecked Return Value 12

PSC-5:Unused return value 14

PSC-6:Use of unified fund withdrawal function 17

PSC-7: _getTotalPooledApeBalance may be manipulated by rewardAmount 18

PSC-8: stakingBalance should use realWithdraw value, not use the input param amount 20

PSC-9: tmp_fix_withdrawFromApeCoinStaking should only be allowed once 22

PSC-10:event duplicate in AutoCompoundApe.sol 24

PSC-11:liquidate the hacker for profit 30

PSC-12:tmp_fix_withdrawFromApeCoinStaking may be suffering from front-run attack 31

Disclaimer 33

ParaSpace cAPE P2 Competitive Security Assessment

3

Summary

This report is prepared for the project to identify vulnerabilities and issues in the smart contract source code. A group of
NDA covered experienced security experts have participated in the Secure3’s Audit Contest to find vulnerabilities and
optimizations. Secure3 team has participated in the contest process as well to provide extra auditing coverage and
scrutiny of the finding submissions.

The comprehensive examination and auditing scope includes:

 • Cross checking contract implementation against functionalities described in the documents and white paper disclosed
by the project owner.

 • Contract Privilege Role Review to provide more clarity on smart contract roles and privilege.

 • Using static analysis tools to analyze smart contracts against common known vulnerabilities patterns.

 • Verify the code base is compliant with the most up-to-date industry standards and security best practices.

 • Comprehensive line-by-line manual code review of the entire codebase by industry experts.

The security assessment resulted in findings that are categorized in four severity levels: Critical, Medium, Low,
Informational. For each of the findings, the report has included recommendations of fix or mitigation for security and best
practices.

ParaSpace cAPE P2 Competitive Security Assessment

4

Overview

Project Detail

Project Name ParaSpace cAPE P2

Platform & Language Solidity

Codebase https://github.com/para-space/paraspace-core
audit commit - 684dd70b9c76c47c9742ae4bbcf4d645090c58cf
final commit - d3263e22565e7715c12a145313a615cde50a03fc

Audit Methodology Audit Contest
Business Logic and Code Review
Privileged Roles Review
Static Analysis

Code Vulnerability Review Summary

Vulnerability Level Total Reported Acknowledged Fixed Mitigated Declined

Critical 0 0 0 0 0 0

Medium 4 0 1 2 0 1

Low 5 1 3 0 0 1

Informational 3 0 2 0 0 1

ParaSpace cAPE P2 Competitive Security Assessment

5

Audit Scope

File Commit Hash

contracts/misc/AutoCompoundApe.sol 684dd70b9c76c47c9742ae4bbcf4d645090c58cf

contracts/protocol/libraries/logic/ReserveLogic.sol 684dd70b9c76c47c9742ae4bbcf4d645090c58cf

contracts/protocol/libraries/logic/SupplyLogic.sol 684dd70b9c76c47c9742ae4bbcf4d645090c58cf

contracts/protocol/libraries/logic/ValidationLogic.sol 684dd70b9c76c47c9742ae4bbcf4d645090c58cf

contracts/protocol/pool/PoolCore.sol 684dd70b9c76c47c9742ae4bbcf4d645090c58cf

ParaSpace cAPE P2 Competitive Security Assessment

6

Code Assessment Findings

ID Name Category Severity Status Contributor

PSC-1 Additional yield does not match
bufferStakingBalance

Logic Medium Fixed Kong7ych3

PSC-2 Did not judge the actual payment
reward

Logical Medium Fixed Hupixiong3

PSC-3 Potential Reentrancy Attack Reentrancy Low Acknowled
ged

BradMoonU
ESTC

PSC-4 Unchecked Return Value Logical Medium Declined BradMoonU
ESTC

ParaSpace cAPE P2 Competitive Security Assessment

7

PSC-5 Unused return value Code Style Informational Acknowled
ged

BradMoonU
ESTC

PSC-6 Use of unified fund withdrawal function Logical Low Declined Hupixiong3

PSC-7 _getTotalPooledApeBalance may be
manipulated by rewardAmount

Logical Medium Acknowled
ged

Secure3

PSC-8 stakingBalance should use
realWithdraw value, not use the input
param amount

Code Style Informational Declined xfu

PSC-9 tmp_fix_withdrawFromApeCoinStak
ing should only be allowed once

Logical Low Acknowled
ged

Secure3

PSC-10 event duplicate in
AutoCompoundApe.sol

Gas
Optimization

Informational Acknowled
ged

xfu

PSC-11 liquidate the hacker for profit Logical Low Acknowled
ged

comcat

PSC-12 tmp_fix_withdrawFromApeCoinStaking
may be suffering from front-run attack

Logical Low Reported thereksfour

ParaSpace cAPE P2 Competitive Security Assessment

8

PSC-1:Additional yield does not match bufferStakingBalance

Category Severity Code Reference Status Contributor

Logic Medium code/contracts/misc/AutoCompou
ndApe.sol#L111

Fixed Kong7ych3

Code

111: stakingBalance -= amount;

Description
Kong7ych3 : In the temporary repair function for exchange rate, a fixed amount is used for withdrawal to update
bufferStakingBalance. If other users still stake for the cAPE contract before the repair is completed, the cAPE contract
will receive additional benefits. This part of the income will be distributed to users, so the amount that all users can
withdraw in cAPE will be larger than expected. This should be a good thing, but unfortunately bufferStakingBalance will
not be updated accordingly, which will cause a user to revert in the future when performing the
_withdrawFromApeCoinStaking operation because the withdrawn amount will be greater than bufferStakingBalance,
resulting in user funds being locked.

 function _withdrawFromApeCoinStaking(uint256 amount) internal {
 ...
 bufferStakingBalance -= amount;
 ...
 }

Recommendation
Kong7ych3 : It is recommended to add a function to update the bufferStakingBalance parameter to avoid the above
issue.

Consider below fix:

 function rebaseFromApeCoinStaking() external onlyOwner {
 (bufferStakingBalance,) = apeStaking.addressPosition(address(this));
 }

Client Response
Fixed.

ParaSpace cAPE P2 Competitive Security Assessment

9

PSC-2:Did not judge the actual payment reward

Category Severity Code Reference Status Contributor

Logical Medium -
code/contracts/misc/AutoCompound
Ape.sol#L134-L144

Fixed Hupixiong3

Code

134: function _harvest() internal {
135: uint256 rewardAmount = apeStaking.pendingRewards(
136: APE_COIN_POOL_ID,
137: address(this),
138: 0
139:);
140: if (rewardAmount > 0) {
141: apeStaking.claimSelfApeCoin();
142: bufferBalance += rewardAmount;
143: }
144: }

Description
Hupixiong3 : When the reward is claimed through the _harvest() function, the contract balance change is not determined
to be consistent with rewardAmount. When there is any change or malfunction to the pledge agreement of APE,
bufferBalance will update error.

Recommendation
Hupixiong3 : Adding a judgment about whether the contract balance changes in line with rewardAmount when the
reward is claimed through the _harvest() function can effectively prevent errors.

Consider below fix in the AutoCompoundApe._harvest() function

ParaSpace cAPE P2 Competitive Security Assessment

10

 function _harvest() internal {
 uint256 rewardAmount = apeStaking.pendingRewards(
 APE_COIN_POOL_ID,
 address(this),
 0
);
 if (rewardAmount > 0) {
 uint256 balanceBefore = apeCoin.balanceOf(address(this));
 apeStaking.claimSelfApeCoin();
 uint256 balanceAfter = apeCoin.balanceOf(address(this));
 uint256 realClaim = balanceAfter - balanceBefore;
 require(rewardAmount==realClaim,"Reward error")
 bufferBalance += rewardAmount;
 }
 }

Client Response
Fixed.

ParaSpace cAPE P2 Competitive Security Assessment

11

PSC-3:Potential Reentrancy Attack

Category Severity Code Reference Status Contributor

Reentrancy Low code/contracts/misc/AutoCompou
ndApe.sol#L14

Acknowledged BradMoonUES
TC

Code

14:contract AutoCompoundApe is

Description
BradMoonUESTC : In the contract autocompoundape, there are a large number of potential token transfers. In this case,
if there is a received hook logic, the attacker may use this to carry out re-entry attacks

Recommendation
BradMoonUESTC : Use reetrancy lock

Client Response
Acknowledged.We did not fix it because we think ApeCoin don't have received hook logic.

ParaSpace cAPE P2 Competitive Security Assessment

12

PSC-4:Unchecked Return Value

Category Severity Code Reference Status Contributor

Logical Medium code/contracts/misc/AutoCompou
ndApe.sol#L125-L145

Declined BradMoonUES
TC

Code

125: function _compound() internal {
126: uint256 _bufferBalance = bufferBalance;
127: if (_bufferBalance >= MIN_OPERATION_AMOUNT) {
128: apeStaking.depositSelfApeCoin(_bufferBalance);
129: stakingBalance += _bufferBalance;
130: bufferBalance = 0;
131: }
132: }
133:
134: function _harvest() internal {
135: uint256 rewardAmount = apeStaking.pendingRewards(
136: APE_COIN_POOL_ID,
137: address(this),
138: 0
139:);
140: if (rewardAmount > 0) {
141: apeStaking.claimSelfApeCoin();
142: bufferBalance += rewardAmount;
143: }
144: }
145:

Description
BradMoonUESTC : The AutoCompoundApe contract implements an automatic compounding mechanism for the Ape
token by using the ApeCoinStaking contract. The contract has functions for depositing, withdrawing, harvesting rewards,
and compounding the Ape token. However, there are potential security issues with the compound and harvest functions,
which may result in incorrect updates to the bufferBalance variable.

The compound function uses the depositSelfApeCoin function of the ApeCoinStaking contract to deposit Ape tokens and
updates the bufferBalance variable. However, if the deposit operation fails or returns an unexpected value, the

ParaSpace cAPE P2 Competitive Security Assessment

13

bufferBalance variable may not be updated correctly. Similarly, the harvest function uses the claimSelfApeCoin function to
claim rewards and updates the bufferBalance variable, which may also be affected by unexpected returns or failures.

Recommendation
BradMoonUESTC : To address these potential security issues, we recommend adding error handling and checks in the
compound and harvest functions to ensure that the deposit and claim operations are successful and return the expected
values. Additionally, it is essential to monitor the ApeCoinStaking contract for any changes or potential vulnerabilities that
may affect the functionality of the AutoCompoundApe contract. Furthermore, it is recommended to use the
ReentrancyGuard to prevent re-entrancy attacks and to follow best practices for secure coding and contract
development. Finally, it is essential to test the contract thoroughly and perform audits by security experts to ensure its
safety and reliability.

Client Response
Declined. These functions don't have a return value.

ParaSpace cAPE P2 Competitive Security Assessment

14

PSC-5:Unused return value

Category Severity Code Reference Status Contributor

Code Style Informational code/contracts/protocol/libraries/l
ogic/SupplyLogic.sol#L118-L122
code/contracts/protocol/pool/Pool
Core.sol#L504-L522
code/contracts/protocol/pool/Pool
Core.sol#L535-L553

Acknowledged BradMoonUES
TC

Code

ParaSpace cAPE P2 Competitive Security Assessment

15

118: IVariableDebtToken(debtTokenAddress).burn(
119: from,
120: debtBalance,
121: borrowIndex
122:);

504: LiquidationLogic.executeLiquidateERC20(
505: ps._reserves,
506: ps._reservesList,
507: ps._usersConfig,
508: DataTypes.ExecuteLiquidateParams({
509: reservesCount: ps._reservesCount,
510: liquidationAmount: liquidationAmount,
511: auctionRecoveryHealthFactor: ps._auctionRecoveryHealthFactor,
512: weth: ADDRESSES_PROVIDER.getWETH(),
513: collateralAsset: collateralAsset,
514: liquidationAsset: liquidationAsset,
515: borrower: borrower,
516: liquidator: msg.sender,
517: receiveXToken: receivePToken,
518: priceOracle: ADDRESSES_PROVIDER.getPriceOracle(),
519: priceOracleSentinel: ADDRESSES_PROVIDER.getPriceOracleSentinel(),
520: collateralTokenId: 0
521: })
522:);

535: LiquidationLogic.executeLiquidateERC721(
536: ps._reserves,
537: ps._reservesList,
538: ps._usersConfig,
539: DataTypes.ExecuteLiquidateParams({
540: reservesCount: ps._reservesCount,
541: liquidationAmount: maxLiquidationAmount,
542: auctionRecoveryHealthFactor: ps._auctionRecoveryHealthFactor,
543: weth: ADDRESSES_PROVIDER.getWETH(),
544: collateralAsset: collateralAsset,
545: liquidationAsset: ADDRESSES_PROVIDER.getWETH(),
546: collateralTokenId: collateralTokenId,
547: borrower: borrower,
548: liquidator: msg.sender,
549: receiveXToken: receiveNToken,
550: priceOracle: ADDRESSES_PROVIDER.getPriceOracle(),

ParaSpace cAPE P2 Competitive Security Assessment

16

551: priceOracleSentinel: ADDRESSES_PROVIDER.getPriceOracleSentinel()
552: })
553:);

Description
BradMoonUESTC : Not using the return values from these functions can potentially lead to issues with error handling or
tracking the state of the tokens being burned or minted. For example, if the burn function call were to fail for some
reason, such as insufficient balance or an invalid input, the function would throw an exception, but since the return value
is not being used, the exception would not be caught or handled in any way.

It is generally considered good coding practice to handle the return values of functions appropriately, as it helps to ensure
the correct functioning of the code and improve its robustness.

Recommendation
BradMoonUESTC : Ensure the return value of external function calls is used. Remove or comment out the unused return
function parameters.

Client Response
Acknowledged. We think it's ok.

ParaSpace cAPE P2 Competitive Security Assessment

17

PSC-6:Use of unified fund withdrawal function

Category Severity Code Reference Status Contributor

Logical Low code/contracts/misc/AutoCompou
ndApe.sol#L200

Declined Hupixiong3

Code

200: apeStaking.withdrawApeCoin(amount, receiver);

Description
Hupixiong3 : No uniform fund withdrawal function is used,tmp_fix_withdrawFromApeCoinStaking() function and
_withdrawFromApeCoinStaking() function money back call interface not consistent.

Recommendation
Hupixiong3 : Use of unified fund withdrawal function

Consider below fix in the AutoCompoundApe.tmp_fix_withdrawFromApeCoinStaking() function

 function tmp_fix_withdrawFromApeCoinStaking(address receiver)
 external
 onlyOwner
 {
 uint256 amount = 2332214464588784613678467;
 apeStaking.withdrawSelfApeCoin(amount, receiver);
 (stakingBalance,) = apeStaking.addressPosition(address(this));
 }

Client Response
The recommendation is not right. withdrawSelfApecoin don't have a receiver parameter.

ParaSpace cAPE P2 Competitive Security Assessment

18

PSC-7: _getTotalPooledApeBalance may be manipulated by
rewardAmount

Category Severity Code Reference Status Contributor

Logical Medium code/contracts/misc/AutoCompou
ndApe.sol#L92-L104

Acknowledged Secure3

Code

92: function _getTotalPooledApeBalance()
93: internal
94: view
95: override
96: returns (uint256)
97: {
98: uint256 rewardAmount = apeStaking.pendingRewards(
99: APE_COIN_POOL_ID,
100: address(this),
101: 0
102:);
103: return stakingBalance + rewardAmount + bufferBalance;
104: }

Description
Secure3 : In the _getTotalPooledApeBalance() function, the rewardAmount is calculated by
apeStaking.pendingRewards() call.

The APE_COIN_POOL_ID is a constant 0, and the parameter _address is the address of AutoCompoundApe
contract

 uint256 rewardAmount = apeStaking.pendingRewards(
 APE_COIN_POOL_ID,
 address(this),
 0
);
}

Zoom into apeStaking.pendingRewards() function (in the dependency and a Yuga contract)

ParaSpace cAPE P2 Competitive Security Assessment

19

function pendingRewards(uint256 _poolId, address _address, uint256 _tokenId) external view returns
(uint256) {
 Pool memory pool = pools[_poolId];
 Position memory position = _poolId == 0 ? addressPosition[_address]: nftPosition[_poolId]
[_tokenId];

 (uint256 rewardsSinceLastCalculated,) = rewardsBy(_poolId, pool.lastRewardedTimestampHour,
getPreviousTimestampHour());
 uint256 accumulatedRewardsPerShare = pool.accumulatedRewardsPerShare;

 if (block.timestamp > pool.lastRewardedTimestampHour + SECONDS_PER_HOUR && pool.stakedAmount
!= 0) {
 accumulatedRewardsPerShare = accumulatedRewardsPerShare + rewardsSinceLastCalculated *
APE_COIN_PRECISION / pool.stakedAmount;
 }
 return ((position.stakedAmount * accumulatedRewardsPerShare).toInt256() -
position.rewardsDebt).toUint256() / APE_COIN_PRECISION;
 }

Because APE_COIN_POOL_ID is 0, position is addressPosition[_address] . This is the same cause of the
previous hack. accumulatedRewardsPerShare does not increase in one block because the depositApeCoin()
operation calls updatePool(APECOIN_POOL_ID) and ensures pool.lastRewardedTimestampHour is updated.
The _recipient parameter in depositApeCoin() is set to the AutoCompoundApe 's address, so
position.stakedAmount may be manipulated. This may result in _getTotalPooledApeBalance() gets
manipulated.

However, since the value of accumulatedRewardsPerShare is unclear, this maybe very difficult for hacker to borrow
more than the amount staked into the contract within the same block.

Recommendation
Secure3 : To be safe, need a storage variable rewardAmount to record the reward amount in the AutoCompoundApe.

Client Response
Acknowledged. We think it's impossible that rewardAmount can be manipulated.

ParaSpace cAPE P2 Competitive Security Assessment

20

PSC-8: stakingBalance should use realWithdraw value,
not use the input param amount

Category Severity Code Reference Status Contributor

Code Style Informational code/contracts/misc/AutoCompou
ndApe.sol#L106-L113

Declined xfu

Code

106: function _withdrawFromApeCoinStaking(uint256 amount) internal {
107: uint256 balanceBefore = apeCoin.balanceOf(address(this));
108: apeStaking.withdrawSelfApeCoin(amount);
109: uint256 balanceAfter = apeCoin.balanceOf(address(this));
110: uint256 realWithdraw = balanceAfter - balanceBefore;
111: stakingBalance -= amount;
112: bufferBalance += realWithdraw;
113: }

Description
xfu : For trust minimum assumption, suppose apeStaking.withdrawSelfApeCoin(amount); execution result is
unknown and non-deterministic, using realWithdraw is safer than using amount
Consider below POC contract

 function _withdrawFromApeCoinStaking(uint256 amount) internal {
 uint256 balanceBefore = apeCoin.balanceOf(address(this));
 apeStaking.withdrawSelfApeCoin(amount);
 uint256 balanceAfter = apeCoin.balanceOf(address(this));
 uint256 realWithdraw = balanceAfter - balanceBefore;
 stakingBalance -= amount;
 bufferBalance += realWithdraw;
 }

Recommendation
xfu :

ParaSpace cAPE P2 Competitive Security Assessment

21

 function _withdrawFromApeCoinStaking(uint256 amount) internal {
 uint256 balanceBefore = apeCoin.balanceOf(address(this));
 apeStaking.withdrawSelfApeCoin(amount);
 uint256 balanceAfter = apeCoin.balanceOf(address(this));
 uint256 realWithdraw = balanceAfter - balanceBefore;
 stakingBalance -= realWithdraw;
 bufferBalance += realWithdraw;
 }

Client Response
Declined. realWithdraw is greater than specified withdraw amount can only be happened when ApeCoin reward is also be
withdrawn. The reward amount change cannot be counted in the stakingBalance.

ParaSpace cAPE P2 Competitive Security Assessment

22

PSC-9: tmp_fix_withdrawFromApeCoinStaking should only
be allowed once

Category Severity Code Reference Status Contributor

Logical Low code/contracts/misc/AutoCompou
ndApe.sol#L195-L202

Acknowledged Secure3

Code

195: function tmp_fix_withdrawFromApeCoinStaking(address receiver)
196: external
197: onlyOwner
198: {
199: uint256 amount = 2332214464588784613678467;
200: apeStaking.withdrawApeCoin(amount, receiver);
201: (stakingBalance,) = apeStaking.addressPosition(address(this));
202: }

Description
Secure3 : the function tmp_fix_withdrawFromApeCoinStaking is supposed to only be called one time to set the
initial value of stakingBalance by calling withdrawApeCoin to get the current snapshot the amount of APE staked
in the apeStaking . As there is no setter function for stakingBalance , mistakenlly calling this twice would
permanently set the stakingBalance valuie to a wrong value.

Recommendation
Secure3 : Use the Checks-Effects-Interactions best practice and make all state changes before calling external
contracts. Also, consider using function modifiers such as nonReentrant from Reentrancy Guard to prevent re-
entrancy at the contract level.

Consider below fix in the function

ParaSpace cAPE P2 Competitive Security Assessment

23

 function tmp_fix_withdrawFromApeCoinStaking(address receiver)
 external
 onlyOwner
 {
+ require(stakingBalance == 0, "stakingBalance already set")
 uint256 amount = 2332214464588784613678467;
 apeStaking.withdrawApeCoin(amount, receiver);
 (stakingBalance,) = apeStaking.addressPosition(address(this));
 }

Client Response
Acknowledged. We'll remove this function once we got our lending pool recovered.

ParaSpace cAPE P2 Competitive Security Assessment

24

PSC-10:event duplicate in AutoCompoundApe.sol

Category Severity Code Reference Status Contributor

Gas Optimization Informational code/contracts/misc/AutoCompou
ndApe.sol#L47-L84

Acknowledged xfu

Code

ParaSpace cAPE P2 Competitive Security Assessment

25

47: function deposit(address onBehalf, uint256 amount) external override {
48: require(amount > 0, "zero amount");
49: uint256 amountShare = getShareByPooledApe(amount);
50: if (amountShare == 0) {
51: amountShare = amount;
52: // permanently lock the first MINIMUM_LIQUIDITY tokens to prevent
getPooledApeByShares return 0
53: _mint(address(1), MINIMUM_LIQUIDITY);
54: amountShare = amountShare - MINIMUM_LIQUIDITY;
55: }
56: _mint(onBehalf, amountShare);
57:
58: _transferTokenIn(msg.sender, amount);
59: _harvest();
60: _compound();
61:
62: emit Transfer(address(0), onBehalf, amount);
63: emit Deposit(msg.sender, onBehalf, amount, amountShare);
64: }
65:
66: /// @inheritdoc IAutoCompoundApe
67: function withdraw(uint256 amount) external override {
68: require(amount > 0, "zero amount");
69:
70: uint256 amountShare = getShareByPooledApe(amount);
71: _burn(msg.sender, amountShare);
72:
73: _harvest();
74: uint256 _bufferBalance = bufferBalance;
75: if (amount > _bufferBalance) {
76: _withdrawFromApeCoinStaking(amount - _bufferBalance);
77: }
78: _transferTokenOut(msg.sender, amount);
79:
80: _compound();
81:
82: emit Transfer(msg.sender, address(0), amount);
83: emit Redeem(msg.sender, amount, amountShare);
84: }

ParaSpace cAPE P2 Competitive Security Assessment

26

Description
xfu : In deposit and withdraw function, all parameters of transfer have been covered by Deposit and Redeem events, so
the transfer event can be removed for saving gas

Consider below POC contract

ParaSpace cAPE P2 Competitive Security Assessment

27

function deposit(address onBehalf, uint256 amount) external override {
 require(amount > 0, "zero amount");
 uint256 amountShare = getShareByPooledApe(amount);
 if (amountShare == 0) {
 amountShare = amount;
 // permanently lock the first MINIMUM_LIQUIDITY tokens to prevent getPooledApeByShares
return 0
 _mint(address(1), MINIMUM_LIQUIDITY);
 amountShare = amountShare - MINIMUM_LIQUIDITY;
 }
 _mint(onBehalf, amountShare);

 _transferTokenIn(msg.sender, amount);
 _harvest();
 _compound();

 emit Transfer(address(0), onBehalf, amount);
 emit Deposit(msg.sender, onBehalf, amount, amountShare);
 }

 /// @inheritdoc IAutoCompoundApe
 function withdraw(uint256 amount) external override {
 require(amount > 0, "zero amount");

 uint256 amountShare = getShareByPooledApe(amount);
 _burn(msg.sender, amountShare);

 _harvest();
 uint256 _bufferBalance = bufferBalance;
 if (amount > _bufferBalance) {
 _withdrawFromApeCoinStaking(amount - _bufferBalance);
 }
 _transferTokenOut(msg.sender, amount);

 _compound();

 emit Transfer(msg.sender, address(0), amount);
 emit Redeem(msg.sender, amount, amountShare);
 }

Recommendation

ParaSpace cAPE P2 Competitive Security Assessment

28

xfu :

function deposit(address onBehalf, uint256 amount) external override {
 require(amount > 0, "zero amount");
 uint256 amountShare = getShareByPooledApe(amount);
 if (amountShare == 0) {
 amountShare = amount;
 // permanently lock the first MINIMUM_LIQUIDITY tokens to prevent getPooledApeByShares
return 0
 _mint(address(1), MINIMUM_LIQUIDITY);
 amountShare = amountShare - MINIMUM_LIQUIDITY;
 }
 _mint(onBehalf, amountShare);

 _transferTokenIn(msg.sender, amount);
 _harvest();
 _compound();

 emit Deposit(msg.sender, onBehalf, amount, amountShare);
 }

 /// @inheritdoc IAutoCompoundApe
 function withdraw(uint256 amount) external override {
 require(amount > 0, "zero amount");

 uint256 amountShare = getShareByPooledApe(amount);
 _burn(msg.sender, amountShare);

 _harvest();
 uint256 _bufferBalance = bufferBalance;
 if (amount > _bufferBalance) {
 _withdrawFromApeCoinStaking(amount - _bufferBalance);
 }
 _transferTokenOut(msg.sender, amount);

 _compound();

 emit Redeem(msg.sender, amount, amountShare);
 }

Client Response

ParaSpace cAPE P2 Competitive Security Assessment

29

Acknowledged. We think it's ok.

ParaSpace cAPE P2 Competitive Security Assessment

30

PSC-11:liquidate the hacker for profit

Category Severity Code Reference Status Contributor

Logical Low code/contracts/misc/AutoCompou
ndApe.sol#L101

Acknowledged comcat

Code

101: 0

Description
comcat : To patch the bug, the following steps were taken:

1. All pToken and debt Token owned by the hackers were transferred to the target address.
2. APE coin was withdrawn from APE_STAKING and the cAPE totalStaked amount was rebalanced. This led to the

price of cAPE returning to normal.

As a result, the target address, which now holds all the debt of the hacker, will become insolvent. At this point, a normal
user can choose to liquidate it and gain a profit.

Recommendation
comcat : try to deposit asset on behave of the target address, to make it solvent. and avoid liquidation happen.

Client Response
Lending pool is now paused, so liquidation cannot be happen.

ParaSpace cAPE P2 Competitive Security Assessment

31

PSC-12:tmp_fix_withdrawFromApeCoinStaking may be
suffering from front-run attack

Category Severity Code Reference Status Contributor

Logical Low code/contracts/misc/AutoCompou
ndApe.sol#L195-L202

Reported thereksfour

Code

195: function tmp_fix_withdrawFromApeCoinStaking(address receiver)
196: external
197: onlyOwner
198: {
199: uint256 amount = 2332214464588784613678467;
200: apeStaking.withdrawApeCoin(amount, receiver);
201: (stakingBalance,) = apeStaking.addressPosition(address(this));
202: }

Description
thereksfour : tmp_fix_withdrawFromApeCoinStaking is aiming to correct exchangeRate by withdrawing excess Apecoin
from apeStaking, the issue here is that tmp_fix_withdrawFromApeCoinStaking uses a hard-coded amount variable.

 function tmp_fix_withdrawFromApeCoinStaking(address receiver)
 external
 onlyOwner
 {
 uint256 amount = 2332214464588784613678467; // @audit: hard-code
 apeStaking.withdrawApeCoin(amount, receiver);
 (stakingBalance,) = apeStaking.addressPosition(address(this));
 }

So if an attacker calls apeStaking.depositApeCoin to deposit Apecoin for cAPE before
tmp_fix_withdrawFromApeCoinStaking is called, then tmp_fix_withdrawFromApeCoinStaking may not correct the
exchangeRate.

More seriously, if the fix transaction is executed in one block and unpause the contract, an attacker may be able
to attack again by manipulating exchangeRate.

ParaSpace cAPE P2 Competitive Security Assessment

32

Consider the following scenario. amount = 2332214464588784613678467 stakedAmount =
3130478168733033716550925 _totalShare = 677690490457728868070243 Target stakingBalance = stakedAmount -
amount = 798263704144249102872458 Target exchangeRate = stakingBalance/ _totalShare = 0.85.

The attacker front runs tmp_fix_withdrawFromApeCoinStaking by calling apeStaking.depositApeCoin to deposit Apecoin
for cAPE. When tmp_fix_withdrawFromApeCoinStaking is executed, the stakingBalance is larger than expected and the
exchangeRate is not corrected.

Recommendation
thereksfour : Consider using the hard-coded exchangeRate instead of the amount

 function tmp_fix_withdrawFromApeCoinStaking(address receiver)
 external
 onlyOwner
 {
- uint256 amount = 2332214464588784613678467;
+ uint256 exchangeRate = 85 * 1e16;
+ uint256 stakedAmount = apeStaking.addressPosition(address(this));
+ uint256 amount = stakedAmount - _totalShare * 1e18 / exchangeRate ;
 apeStaking.withdrawApeCoin(amount, receiver);
 (stakingBalance,) = apeStaking.addressPosition(address(this));
 }

Client Response
Acknowledged. We'll remove this function once we got our lending pool recovered.

ParaSpace cAPE P2 Competitive Security Assessment

33

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,
disclaimer and limitation of liability) set forth in the Invoices, or the scope of services, and terms and conditions provided
to you (“Customer” or the “Company”) in connection with the Invoice. This report provided in connection with the services
set forth in the Invoices shall be used by the Company only to the extent permitted under the terms and conditions set
forth in the Invoice. This report may not be transmitted, disclosed, referred to or relied upon by any person for any
purposes, nor may copies be delivered to any other person other than the Company, without Secure3’s prior written
consent in each instance.

This report is not an “endorsement” or “disapproval” of any particular project or team. This report is not an indication of
the economics or value of any “product” or “asset” created by any team or project that contracts Secure3 to perform a
security assessment. This report does not provide any warranty or guarantee of free of bug of codes analyzed, nor do
they provide any indication of the technologies, business model or legal compliancy.

This report should not be used in any way to make decisions around investment or involvement with any particular
project. Instead, it represents an extensive assessing process intending to help our customers increase the quality of
their code and high-level consistency of implementation and business model, while reducing the risk presented by
cryptographic tokens and blockchain technology.

Secure3’s position on the final decisions over blockchain technologies and corresponding associated transactions is that
each company and individual are responsible for their own due diligence and continuous security.

The assessment services provided by Secure3 is subject to dependencies and under continuing development. The
assessment reports could include false positives, false negatives, and other unpredictable results. The services may
access, and depend upon, multiple layers of third-parties.

