
# Competitive Security Assessment

ParaSpace - Ape Yield

Dec 27th, 2022

Secure3 secure3.io

$



ParaSpace - Ape Yield Competitive Security Assessment

2

Summary 3

Overview 4

Audit Scope 5

Code Assessment Findings 6

PSA-1:In the Pause state, users cannot redeem ApeCoin 8

PSA-2:SafeMath is unnecessary after solidity 0.8.0 11

PSA-3:User can withdraw  for free. 13

PSA-4: _transfer  duplicate checks for the zero address 15

PSA-5:claimApeAndCompound() may put the user under the liquidation threshold 17

Disclaimer 21



ParaSpace - Ape Yield Competitive Security Assessment

3

Summary

This report is prepared for the project to identify vulnerabilities and issues in the smart contract source code. A group of
NDA covered experienced security experts have participated in the Secure3’s Audit Contest to find vulnerabilities and
optimizations. Secure3 team has participated in the contest process as well to provide extra auditing coverage and
scrutiny of the finding submissions.

 
The comprehensive examination and auditing scope includes:

  • Cross checking contract implementation against functionalities described in the documents and white paper disclosed
by the project owner.

  • Contract Privilege Role Review to provide more clarity on smart contract roles and privilege.

  • Using static analysis tools to analyze smart contracts against common known vulnerabilities patterns.

  • Verify the code base is compliant with the most up-to-date industry standards and security best practices.

  • Comprehensive line-by-line manual code review of the entire codebase by industry experts.

 

The security assessment resulted in findings that are categorized in four severity levels: Critical, Medium, Low,
Informational. For each of the findings, the report has included recommendations of fix or mitigation for security and best
practices.



ParaSpace - Ape Yield Competitive Security Assessment

4

Overview

Project Detail

Project Name ParaSpace - Ape Yield

Platform & Language Solidity

Codebase https://github.com/para-space/paraspace-core
audit commit - b698c7d3a26311bdecf519dcc83147286742ba05
final commit - 22e094404dcbae88f8dbab9b6432627bf1576dfc

Audit Methodology Audit Contest
Business Logic and Code Review
Privileged Roles Review
Static Analysis

Code Vulnerability Review Summary

Vulnerability Level Total Reported Acknowledged Fixed Mitigated Declined

Critical 0 0 0 0 0 0

Medium 1 0 1 0 0 0

Low 1 0 1 0 0 0

Informational 3 0 1 1 0 1



ParaSpace - Ape Yield Competitive Security Assessment

5

Audit Scope

File Commit Hash

contracts/interfaces/IAutoCompoundApe.sol b698c7d3a26311bdecf519dcc83147286742ba05

contracts/interfaces/ICApe.sol b698c7d3a26311bdecf519dcc83147286742ba05

contracts/interfaces/IPoolApeStaking.sol b698c7d3a26311bdecf519dcc83147286742ba05

contracts/interfaces/IPoolParameters.sol b698c7d3a26311bdecf519dcc83147286742ba05

contracts/misc/AutoCompoundApe.sol b698c7d3a26311bdecf519dcc83147286742ba05

contracts/misc/CApe.sol b698c7d3a26311bdecf519dcc83147286742ba05

contracts/protocol/libraries/types/DataTypes.sol b698c7d3a26311bdecf519dcc83147286742ba05

contracts/protocol/pool/PoolApeStaking.sol b698c7d3a26311bdecf519dcc83147286742ba05

contracts/protocol/pool/PoolParameters.sol b698c7d3a26311bdecf519dcc83147286742ba05

contracts/protocol/tokenization/CApeDebtToken.sol b698c7d3a26311bdecf519dcc83147286742ba05

contracts/protocol/tokenization/PTokenCApe.sol b698c7d3a26311bdecf519dcc83147286742ba05



ParaSpace - Ape Yield Competitive Security Assessment

6

Code Assessment Findings

ID Name Category Severity Status Contributor

PSA-1 In the Pause state, users cannot redeem
ApeCoin

Logical Informational Declined thereksfour

PSA-2 SafeMath is unnecessary after solidity
0.8.0

Gas
Optimization

Informational Acknowled
ged

comcat,
jayphbee,
Hupixiong3

PSA-3 User can withdraw  for free. Logical Medium Acknowled
ged

jayphbee

PSA-4 _transfer  duplicate checks for the
zero address

Gas
Optimization

Informational Fixed Hupixiong3



ParaSpace - Ape Yield Competitive Security Assessment

7

PSA-5 claimApeAndCompound() may put the
user under the liquidation threshold

Logical Low Acknowled
ged

thereksfour



ParaSpace - Ape Yield Competitive Security Assessment

8

PSA-1:In the Pause state, users cannot redeem ApeCoin

Category Severity Code Reference Status Contributor

Logical Informational code/contracts/misc/AutoCompou
ndApe.sol#L48-L64
code/contracts/misc/CApe.sol#L3
91-L404

Declined thereksfour

Code



ParaSpace - Ape Yield Competitive Security Assessment

9

48:    function withdraw(uint256 amount) external override {
49:        require(amount > 0, "zero amount");
50:
51:        uint256 amountShare = getShareByPooledApe(amount);
52:        _burn(msg.sender, amountShare);
53:
54:        _harvest();
55:        uint256 _bufferBalance = bufferBalance;
56:        if (amount > _bufferBalance) {
57:            _withdrawFromApeCoinStaking(amount - _bufferBalance);
58:        }
59:        _transferTokenOut(msg.sender, amount);
60:
61:        _compound();
62:
63:        emit Redeem(msg.sender, amount, amountShare);
64:    }

391:    function _burn(address account, uint256 sharesAmount)
392:        internal
393:        virtual
394:        whenNotPaused
395:    {
396:        require(account != address(0), "burn from the zero address");
397:
398:        shares[account] = shares[account].sub(
399:            sharesAmount,
400:            "burn amount exceeds balance"
401:        );
402:        _totalShare = _totalShare.sub(sharesAmount);
403:        emit Transfer(account, address(0), getPooledApeByShares(sharesAmount));
404:    }

Description
thereksfour : When the user calls AutoCompoundApe.withdraw to redeem ApeCoin, CApe._burn will be called.



ParaSpace - Ape Yield Competitive Security Assessment

10

    function withdraw(uint256 amount) external override {
        require(amount > 0, "zero amount");

        uint256 amountShare = getShareByPooledApe(amount);
        _burn(msg.sender, amountShare);

However, CApe._burn can only be called in the non-Pause state, which means that if the system is in the Pause state for
some reason, the user's deposited ApeCoin will not be redeemed.

    function _burn(address account, uint256 sharesAmount)
        internal
        virtual
        whenNotPaused
    {

This is not necessary, users should be able to redeem their ApeCoin at any time, and the design is likely to affect the
reputation of the project.

Recommendation
thereksfour : Removing the whenNotPaused modifier from CApe._burn

    function _burn(address account, uint256 sharesAmount)
        internal
        virtual
-       whenNotPaused
    {

Client Response
It's our product design. We did this to prevent extreme problems.



ParaSpace - Ape Yield Competitive Security Assessment

11

PSA-2:SafeMath is unnecessary after solidity 0.8.0

Category Severity Code Reference Status Contributor

Gas Optimization Informational code/contracts/misc/AutoCompou
ndApe.sol#L13
code/contracts/misc/AutoCompou
ndApe.sol#13
code/contracts/misc/CApe.sol#L1
7
code/contracts/misc/CApe.sol#17

Acknowledged comcat,
jayphbee,
Hupixiong3

Code

13:    using SafeMath for uint256;

13:    using SafeMath for uint256;

17:    using SafeMath for uint256;

17:    using SafeMath for uint256;

Description
comcat : in the solidity 0.8.10, the compiler handles the basic math operation well, if it overflow/subflow, it will revert. so
there is no need to use safeMath instead.
jayphbee : After solidity 0.8.0, SafeMath library is unnecessary.
Hupixiong3 : The compiler version specified is 0.8.0 or higher, and overflow check is built in.The SafeMath library may
not be used.Use unchecked to ignore partially calculated overflow checking.This will reduce the consumption of gas.

Recommendation
comcat : remove the usage of safe math.
jayphbee : Remove SafeMath library.
Hupixiong3 : Do not use SafeMath library.



ParaSpace - Ape Yield Competitive Security Assessment

12

Client Response
Since SafeMath library for solidity 0.8.10 used unchecked block for it's implementation. it's almost same gas comsumtion
for using SafeMath library or not. Using SafeMath library just lost some opportunities to use unchecked block directly, but
we think it's ok.



ParaSpace - Ape Yield Competitive Security Assessment

13

PSA-3:User can withdraw  for free.

Category Severity Code Reference Status Contributor

Logical Medium code/contracts/misc/AutoCompou
ndApe.sol#L34
code/contracts/misc/AutoCompou
ndApe.sol#L51

Acknowledged jayphbee

Code

34:        uint256 amountShare = getShareByPooledApe(amount);

51:        uint256 amountShare = getShareByPooledApe(amount);

Description
jayphbee : In the AutoCompoundApe.sol::withdraw  function, user withraw amount  of apeCoin by burn
amountShare  calculated by getShareByPooledApe . The getShareByPooledApe  function implemented like this:

function getShareByPooledApe(uint256 amount) public view returns (uint256) {
        uint256 totalPooledApe = _getTotalPooledApeBalance();
        if (totalPooledApe == 0) {
            return 0;
        } else {
            return (amount * _getTotalShares()) / totalPooledApe;
        }
    }

Here (amount * _getTotalShares()) / totalPooledApe  could return 0 if (amount * 
_getTotalShares()) < totalPooledApe . In the withraw  function, amountShare  is not checked if it is 0:

uint256 amountShare = getShareByPooledApe(amount);
_burn(msg.sender, amountShare);

And then amount  of apeCoin is transferred to msg.sender .

_transferTokenOut(msg.sender, amount);

That is to say, user burns 0 share but gets amount  of apeCoin transferred out for free. Note: this also applies to the
deposit  function where user could get more shares if getShareByPooledApe  returns 0.

Recommendation
jayphbee : Only when amountShare > 0  burned, can apeCoin be transferred out.



ParaSpace - Ape Yield Competitive Security Assessment

14

uint256 amountShare = getShareByPooledApe(amount);
require(amountShare > 0, "whatever");
 _burn(msg.sender, amountShare);

Client Response
It's a calculation precision issue. but since the attacker need to pay transaction fee for it, and the transaction fee value is
always much greater than the amount of ApeCoin value they get. The attacker has no economic incentive to do so, so we
think it's ok.



ParaSpace - Ape Yield Competitive Security Assessment

15

PSA-4: _transfer  duplicate checks for the zero address

Category Severity Code Reference Status Contributor

Gas Optimization Informational code/contracts/misc/CApe.sol#L3
44-L357

Fixed Hupixiong3

Code

344:    function _transferShares(
345:        address _sender,
346:        address _recipient,
347:        uint256 _sharesAmount
348:    ) internal whenNotPaused {
349:        require(_sender != address(0), "TRANSFER_FROM_THE_ZERO_ADDRESS");
350:        require(_recipient != address(0), "TRANSFER_TO_THE_ZERO_ADDRESS");
351:
352:        shares[_sender] = shares[_sender].sub(
353:            _sharesAmount,
354:            "transfer amount exceeds balance"
355:        );
356:        shares[_recipient] = shares[_recipient].add(_sharesAmount);
357:    }

Description
Hupixiong3 : The _transferShares  function is used only for _transfer  function, and the _transfer  function
has already performed 0 address check.

Recommendation
Hupixiong3 : Cancel the _transferShares function or 0 address check.

Consider below fix in the _transferShares  function



ParaSpace - Ape Yield Competitive Security Assessment

16

    function _transferShares(
        address _sender,
        address _recipient,
        uint256 _sharesAmount
    ) internal whenNotPaused {
        shares[_sender] = shares[_sender].sub(
            _sharesAmount,
            "transfer amount exceeds balance"
        );
        shares[_recipient] = shares[_recipient].add(_sharesAmount);
    }

Or Consider below fix in the _transfer  function

    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual whenNotPaused{
        require(sender != address(0), "transfer from the zero address");
        require(recipient != address(0), "transfer to the zero address");

        uint256 _sharesToTransfer = getShareByPooledApe(amount);
        shares[_sender] = shares[_sender].sub(
            _sharesAmount,
            "transfer amount exceeds balance"
        );
        shares[_recipient] = shares[_recipient].add(_sharesAmount);
        emit Transfer(sender, recipient, amount);
    }

Client Response
fixed



ParaSpace - Ape Yield Competitive Security Assessment

17

PSA-5:claimApeAndCompound() may put the user under the
liquidation threshold

Category Severity Code Reference Status Contributor

Logical Low code/contracts/protocol/pool/Pool
ApeStaking.sol#L436-L490

Acknowledged thereksfour

Code



ParaSpace - Ape Yield Competitive Security Assessment

18

436:    function claimApeAndCompound(
437:        address nftAsset,
438:        address[] calldata users,
439:        uint256[][] calldata tokenIds
440:    ) external nonReentrant {
441:        require(users.length == tokenIds.length, "invalid parameter");
442:        DataTypes.PoolStorage storage ps = poolStorage();
443:        checkSApeIsNotPaused(ps);
444:
445:        address xTokenAddress = ps._reserves[nftAsset].xTokenAddress;
446:
447:        uint256 balanceBefore = APE_COIN.balanceOf(address(this));
448:        uint256[] memory amounts = new uint256[](tokenIds.length);
449:
450:        uint256 totalAmount;
451:        for (uint256 i = 0; i < tokenIds.length; i++) {
452:            uint256[] calldata userTokenIds = tokenIds[i];
453:            for (uint256 j = 0; j < userTokenIds.length; j++) {
454:                address positionOwner = INToken(xTokenAddress).ownerOf(
455:                    userTokenIds[j]
456:                );
457:                require(users[i] == positionOwner, "user is not owner");
458:            }
459:
460:            INTokenApeStaking(xTokenAddress).claimApeCoin(
461:                userTokenIds,
462:                address(this)
463:            );
464:
465:            uint256 balanceAfter = APE_COIN.balanceOf(address(this));
466:            amounts[i] = balanceAfter - balanceBefore;
467:            balanceBefore = balanceAfter;
468:            totalAmount += amounts[i];
469:        }
470:
471:        uint256 compoundFee = ps._apeCompoundFee;
472:        uint256 totalFee = totalAmount.percentMul(compoundFee);
473:        APE_COMPOUND.deposit(address(this), totalAmount);
474:
475:        if (totalFee > 0) {
476:            IERC20(address(APE_COMPOUND)).safeTransfer(msg.sender, totalFee);
477:        }



ParaSpace - Ape Yield Competitive Security Assessment

19

478:
479:        for (uint256 index = 0; index < users.length; index++) {
480:            if (amounts[index] != 0) {
481:                _supplyCApeForUser(
482:                    ps,
483:                    users[index],
484:                    amounts[index].percentMul(
485:                        PercentageMath.PERCENTAGE_FACTOR - compoundFee
486:                    )
487:                );
488:            }
489:        }
490:    }

Description
thereksfour : Anyone can call PoolApeStaking.claimApeAndCompound to deposit any user's unclaimed ApeCoin
rewards in ApeCoinStaking into APE_COMPOUND to be converted to CApe, where a portion of the CApe is sent to the
caller as an incentive.

            INTokenApeStaking(xTokenAddress).claimApeCoin(
                userTokenIds,
                address(this)
            );

            uint256 balanceAfter = APE_COIN.balanceOf(address(this));
            amounts[i] = balanceAfter - balanceBefore;
            balanceBefore = balanceAfter;
            totalAmount += amounts[i];
        }

        uint256 compoundFee = ps._apeCompoundFee;
        uint256 totalFee = totalAmount.percentMul(compoundFee);
        APE_COMPOUND.deposit(address(this), totalAmount);

        if (totalFee > 0) {
            IERC20(address(APE_COMPOUND)).safeTransfer(msg.sender, totalFee);
        }

And _apeCompoundFee can be up to 50%



ParaSpace - Ape Yield Competitive Security Assessment

20

    function setClaimApeForCompoundFee(uint256 fee) external onlyPoolAdmin {
        require(fee < PercentageMath.HALF_PERCENTAGE_FACTOR, "Value Too High");
        DataTypes.PoolStorage storage ps = poolStorage();
        uint256 oldValue = ps._apeCompoundFee;
        if (oldValue != fee) {
            ps._apeCompoundFee = uint16(fee);
            emit ClaimApeForYieldIncentiveUpdated(oldValue, fee);
        }
    }

Since unclaimed ApeCoin rewards in ApeCoinStaking are also part of the user's collateral, claimApeAndCompound
actually reduces the user's collateral and is likely to bring the user below the liquidation threshold, putting the user at risk
of being liquidated.

Recommendation
thereksfour : Add Health Factor checks for users in PoolApeStaking.claimApeAndCompound to avoid bringing users
below the liquidation threshold

Client Response
This is indeed a problem. but it'll cost much more gas if we perform a health factor check. We choose to keep it like this
and have a very low _apeCompoundFee value to reduce the potential risk.



ParaSpace - Ape Yield Competitive Security Assessment

21

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,
disclaimer and limitation of liability) set forth in the Invoices, or the scope of services, and terms and conditions provided
to you (“Customer” or the “Company”) in connection with the Invoice. This report provided in connection with the services
set forth in the Invoices shall be used by the Company only to the extent permitted under the terms and conditions set
forth in the Invoice. This report may not be transmitted, disclosed, referred to or relied upon by any person for any
purposes, nor may copies be delivered to any other person other than the Company, without Secure3’s prior written
consent in each instance.

This report is not an “endorsement” or “disapproval” of any particular project or team. This report is not an indication of
the economics or value of any “product” or “asset” created by any team or project that contracts Secure3 to perform a
security assessment. This report does not provide any warranty or guarantee of free of bug of codes analyzed, nor do
they provide any indication of the technologies, business model or legal compliancy.

This report should not be used in any way to make decisions around investment or involvement with any particular
project. Instead, it represents an extensive assessing process intending to help our customers increase the quality of
their code and high-level consistency of implementation and business model, while reducing the risk presented by
cryptographic tokens and blockchain technology.

Secure3’s position on the final decisions over blockchain technologies and corresponding associated transactions is that
each company and individual are responsible for their own due diligence and continuous security.

The assessment services provided by Secure3 is subject to dependencies and under continuing development. The
assessment reports could include false positives, false negatives, and other unpredictable results. The services may
access, and depend upon, multiple layers of third-parties.


