
Compe��ve Security Assessment

ParaSpace yAPE

Mar 23rd, 2023

Secure3 secure3.io

$

ParaSpace yAPE Competitive Security Assessment

2

Summary 3

Overview 4

Audit Scope 5

Code Assessment Findings 6

PSY-1:ApeCoin token address are marked as immutable 8

PSY-2:Miss 0 amount check for autocompoundape::withdraw() 9

PSY-3:The withdrawFee in PYieldToken will be locked in the contract 11

PSY-4:The security library is not used correctly 13

PSY-5:Using OpenZeppelin's libraries with vulnerabilities 15

PSY-6:Using deprecated function from library 16

PSY-7:Without from!=to check in PYieldToken::_transfer::withdrawFee 19

PSY-8: Pyieldtoken::_updateUserIndex() : WithdrawLockAmount without pay

withdrawFee

23

Disclaimer 24

ParaSpace yAPE Competitive Security Assessment

3

Summary

This report is prepared for the project to identify vulnerabilities and issues in the smart contract source code. A group of
NDA covered experienced security experts have participated in the Secure3’s Audit Contest to find vulnerabilities and
optimizations. Secure3 team has participated in the contest process as well to provide extra auditing coverage and
scrutiny of the finding submissions.

The comprehensive examination and auditing scope includes:

 • Cross checking contract implementation against functionalities described in the documents and white paper disclosed
by the project owner.

 • Contract Privilege Role Review to provide more clarity on smart contract roles and privilege.

 • Using static analysis tools to analyze smart contracts against common known vulnerabilities patterns.

 • Verify the code base is compliant with the most up-to-date industry standards and security best practices.

 • Comprehensive line-by-line manual code review of the entire codebase by industry experts.

The security assessment resulted in findings that are categorized in four severity levels: Critical, Medium, Low,
Informational. For each of the findings, the report has included recommendations of fix or mitigation for security and best
practices.

ParaSpace yAPE Competitive Security Assessment

4

Overview

Project Detail

Project Name ParaSpace yAPE

Platform & Language Solidity

Codebase https://github.com/para-space/paraspace-core
audit commit - 7bb3e5151197eb57a6875238ffeba26fb7f069c8
final commit - f4191290147a62c99ad83133908cfa576a50e0d6

Audit Methodology Audit Contest
Business Logic and Code Review
Privileged Roles Review
Static Analysis

Code Vulnerability Review Summary

Vulnerability Level Total Reported Acknowledged Fixed Mitigated Declined

Critical 0 0 0 0 0 0

Medium 2 0 1 1 0 0

Low 5 0 3 1 0 1

Informational 1 0 1 0 0 0

ParaSpace yAPE Competitive Security Assessment

5

Audit Scope

File Commit Hash

contracts/misc/AutoCompoundApe.sol 7bb3e5151197eb57a6875238ffeba26fb7f069c8

contracts/misc/AutoYieldApe.sol 7bb3e5151197eb57a6875238ffeba26fb7f069c8

contracts/misc/VoteDelegator.sol 7bb3e5151197eb57a6875238ffeba26fb7f069c8

contracts/protocol/tokenization/PToken.sol 7bb3e5151197eb57a6875238ffeba26fb7f069c8

contracts/protocol/tokenization/PYieldToken.sol 7bb3e5151197eb57a6875238ffeba26fb7f069c8

contracts/protocol/tokenization/VariableDebtToken.sol 7bb3e5151197eb57a6875238ffeba26fb7f069c8

ParaSpace yAPE Competitive Security Assessment

6

Code Assessment Findings

ID Name Category Severity Status Contributor

PSY-1 ApeCoin token address are marked as
immutable

DOS Informational Acknowled
ged

0xzoobi

PSY-2 Miss 0 amount check for
autocompoundape::withdraw()

Logical Low Acknowled
ged

8olidity

PSY-3 The withdrawFee in PYieldToken
will be locked in the contract

Logical Medium Acknowled
ged

thereksfour

PSY-4 The security library is not used
correctly

Code Style Low Fixed 8olidity

ParaSpace yAPE Competitive Security Assessment

7

PSY-5 Using OpenZeppelin's libraries with
vulnerabilities

Code Style Low Declined 8olidity

PSY-6 Using deprecated function from
library

Code Style Low Acknowled
ged

8olidity

PSY-7 Without from!=to check in
PYieldToken::_transfer::withdra
wFee

Logical Medium Fixed thereksfour,
8olidity

PSY-8 Pyieldtoken::_updateUserIndex()
: WithdrawLockAmount without pay
withdrawFee

Logical Low Acknowled
ged

8olidity

ParaSpace yAPE Competitive Security Assessment

8

PSY-1:ApeCoin token address are marked as immutable

Category Severity Code Reference Status Contributor

DOS Informational code/contracts/misc/AutoCompou
ndApe.sol#L30
code/contracts/misc/AutoYieldApe
.sol#L37

Acknowledged 0xzoobi

Code

30: IERC20 public immutable apeCoin;

37: address private immutable _apeCoin;

Description
0xzoobi : The whole project is based around Optimizing and giving maximum benefit to users who want to stake their
ApeCoin ERC20 tokens. There can be scenario in the future, where in Yuga Labs can migrate the token to a V2. The
contracts are non upgradable, hence they need to migrate to an new address, this could be to fix a vulnerability or
introduce new features.

The erc20 tokens have been declared as immutable , which means they cannot be updated on the code once
deployed.

There are two scenarios that may happen in the future.

1. Total migration of ApecoinV1 and ApecoinV2, which means the deployment takes place on a new address. This
can result in the ApecoinV1 useless.

2. Both V1 and V2 might co-exist like Uniswap but this is less likely to happen. In this case, Paraspace wont be able
to access the latest features of V2.

Recommendation
0xzoobi : A better approach would be to add an external function with onlyOwner access to modify or update the
ApeCoin token address.

Client Response
Our yApe will be deployed in an upgradable way. So it’s not an issue.

ParaSpace yAPE Competitive Security Assessment

9

PSY-2:Miss 0 amount check for
autocompoundape::withdraw()

Category Severity Code Reference Status Contributor

Logical Low code/contracts/misc/AutoCompou
ndApe.sol#L65-L82

Acknowledged 8olidity

Code

65: function withdraw(uint256 amount) external override {
66: require(amount > 0, "zero amount");
67:
68: uint256 amountShare = getShareByPooledApe(amount);
69: _burn(msg.sender, amountShare);
70:
71: _harvest();
72: uint256 _bufferBalance = bufferBalance;
73: if (amount > _bufferBalance) {
74: _withdrawFromApeCoinStaking(amount - _bufferBalance);
75: }
76: _transferTokenOut(msg.sender, amount);
77:
78: _compound();
79:
80: emit Transfer(msg.sender, address(0), amount);
81: emit Redeem(msg.sender, amount, amountShare);
82: }

Description
8olidity : In autocompoundape::withdraw() , the tokens of the user's amountShare will be burned,

uint256 amountShare = getShareByPooledApe(amount);
_burn(msg.sender, amountShare);

and this value is calculated by getShareByPooledApe() ,Due to solidity rounding, this value may be 0

ParaSpace yAPE Competitive Security Assessment

10

function getShareByPooledApe(uint256 amount) public view returns (uint256) {
 uint256 totalPooledApe = _getTotalPooledApeBalance();
 if (totalPooledApe == 0) {
 return 0;
 } else {
 return (amount * _getTotalShares()) / totalPooledApe;
 }
}

But the contract will still send the user the amount of tokens

_transferTokenOut(msg.sender, amount);

Recommendation
8olidity : Exit function when amountshare = 0

Client Response
For cApe withdraw, this can happen for any input amount. This is due to precision loss and can not be solved. It’s
meaningless just checking 0 amounts.

ParaSpace yAPE Competitive Security Assessment

11

PSY-3:The withdrawFee in PYieldToken will be locked in
the contract

Category Severity Code Reference Status Contributor

Logical Medium code/contracts/protocol/tokenizati
on/PYieldToken.sol#L165-L171
code/contracts/misc/AutoYieldApe
.sol#L370-L382

Acknowledged thereksfour

Code

165: if (leftBalance < userLockFeeBalance) {
166: uint256 withdrawLockAmount = userLockFeeBalance - leftBalance;
167: uint256 withdrawFee = (withdrawLockAmount * lastAccruedIndex) /
168: RAY;
169: _userLockFeeAmount[account] -= withdrawLockAmount;
170: _userPendingYield[account] -= withdrawFee;
171: }

370: if (balanceDiff < 0) {
371: uint256 leftBalance = userBalance - (uint256(-balanceDiff));
372: uint256 userLockFeeBalance = _userLockFeeAmount[account];
373: //here we only need to update lock fee amount and charge fee when reduce user lock
fee amount
374: if (leftBalance < userLockFeeBalance) {
375: uint256 withdrawLockAmount = userLockFeeBalance - leftBalance;
376: uint256 withdrawFee = (withdrawLockAmount *
377: _poolLastAccruedIndex) / RAY;
378: _userLockFeeAmount[account] -= withdrawLockAmount;
379: _userPendingYield[account] -= withdrawFee;
380: _userPendingYield[owner()] += withdrawFee;
381: }
382: }

Description
thereksfour : AutoYieldApe will mint yAPE for users who deposit ApeCoin, and users can deposit yAPE into PYieldToken
to mint pyAPE. When a user transfers yAPE or pyAPE, the last reward is deducted as withdrawFee. yAPE and pyAPE

ParaSpace yAPE Competitive Security Assessment

12

use the same lastAccruedIndex and latestYieldIndex. The difference, however, is that yAPE adds withdrawFee to
_userPendingYield[owner()], while pyAPE does not, which causes the withdrawFee in pyAPE to be locked in the contract.

This is because when the pyAPE is transferred, the yAPE is not actually transferred and is still held in the pyAPE
contract.

Consider alice deposits yAPE to mint pyAPE, and after a period of time generating a profit of 1000 pUSDC, alice
transfers the pyAPE to bob and 100 pUSDC is deducted as the last profit. But since the yAPE in pyAPE has not been
transferred, that is, pyAPE still has 1000 pUSDC of profit, but alice and bob can only take out 9900 pUSDC, leaving 100
pUSDC locked in the contract.

Recommendation
thereksfour : Consider adding FEE_RECIPIENT to the PYieldToken to charge the withdrawalFee.

+ address FEE_RECIPIENT = 0x...;
 if (leftBalance < userLockFeeBalance) {
 uint256 withdrawLockAmount = userLockFeeBalance - leftBalance;
 uint256 withdrawFee = (withdrawLockAmount * lastAccruedIndex) /
 RAY;
 _userLockFeeAmount[account] -= withdrawLockAmount;
 _userPendingYield[account] -= withdrawFee;
+ _userPendingYield[FEE_RECIPIENT] += withdrawFee;
 }

Or consider not charging withdrawFee in PYieldToken

Client Response
We intend to do it. The Withdrawal fee mechanism is just for preventing arbitrage. It will need more gas to keep it
recorded. And since our PYiledToken is also deployed in an upgradable way, it will not be locked.

ParaSpace yAPE Competitive Security Assessment

13

PSY-4:The security library is not used correctly

Category Severity Code Reference Status Contributor

Code Style Low code/contracts/protocol/tokenizati
on/PYieldToken.sol#L43
code/contracts/protocol/tokenizati
on/PYieldToken.sol#L54
code/contracts/protocol/tokenizati
on/PYieldToken.sol#L68
code/contracts/protocol/tokenizati
on/PYieldToken.sol#L69
code/contracts/protocol/tokenizati
on/PYieldToken.sol#L162

Fixed 8olidity

Code

43: _updateUserIndex(onBehalfOf, int256(amount));

54: _updateUserIndex(from, -int256(amount));

68: _updateUserIndex(from, -int256(amount));

69: _updateUserIndex(to, int256(amount));

162: uint256 leftBalance = userBalance - (uint256(-balanceDiff));

Description
8olidity : PYieldToken.sol refers to SafeCast, but it is not used correctly, such as in Mint functions

ParaSpace yAPE Competitive Security Assessment

14

function mint(
 address caller,
 address onBehalfOf,
 uint256 amount,
 uint256 index
) external override onlyPool returns (bool) {
 _updateUserIndex(onBehalfOf, int256(amount));

 return _mintScaled(caller, onBehalfOf, amount, index);
 }

Recommendation
8olidity : The code converts the amount directly to int256, it is safer to use amount.toInt256() here

Client Response
Fixed

ParaSpace yAPE Competitive Security Assessment

15

PSY-5:Using OpenZeppelin's libraries with vulnerabilities

Category Severity Code Reference Status Contributor

Code Style Low code/package.json#L33-L34 Declined 8olidity

Code

33: "@openzeppelin/contracts": "4.2.0",
34: "@openzeppelin/contracts-upgradeable": "4.2.0",

Description
8olidity : Using vulnerable dependency of OpenZeppelin,The package.json configuration file says that the project is
using 4.2.0 of OZ which has a not last update version:

 "@openzeppelin/contracts": "4.2.0",
 "@openzeppelin/contracts-upgradeable": "4.2.0",

poc https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h

Recommendation
8olidity : Use patched versions. Latest non vulnerable version 4.8.0.

Client Response
Our solidity code does not use dependency specified by package.json

ParaSpace yAPE Competitive Security Assessment

16

PSY-6:Using deprecated function from library

Category Severity Code Reference Status Contributor

Code Style Low code/contracts/misc/AutoYieldApe
.sol#L79-L116

Acknowledged 8olidity

Code

ParaSpace yAPE Competitive Security Assessment

17

79: function initialize() public initializer {
80: __Ownable_init();
81: __ERC20_init("ParaSpace Auto Yield APE", "yAPE");
82:
83: //approve ApeCoin for apeCoinStaking
84: uint256 allowance = IERC20(_apeCoin).allowance(
85: address(this),
86: address(_apeStaking)
87:);
88: if (allowance == 0) {
89: IERC20(_apeCoin).safeApprove(
90: address(_apeStaking),
91: type(uint256).max
92:);
93: }
94: //approve _yieldUnderlying for lending pool
95: allowance = IERC20(_yieldUnderlying).allowance(
96: address(this),
97: address(_lendingPool)
98:);
99: if (allowance == 0) {
100: IERC20(_yieldUnderlying).safeApprove(
101: address(_lendingPool),
102: type(uint256).max
103:);
104: }
105: //approve ApeCoin for uniswap
106: allowance = IERC20(_apeCoin).allowance(
107: address(this),
108: address(_swapRouter)
109:);
110: if (allowance == 0) {
111: IERC20(_apeCoin).safeApprove(
112: address(_swapRouter),
113: type(uint256).max
114:);
115: }
116: }

Description

ParaSpace yAPE Competitive Security Assessment

18

8olidity : Deprecated in favor of safeIncreaseAllowance() and safeDecreaseAllowance() . If only setting the
initial allowance to the value that means infinite, safeIncreaseAllowance() can be used instead

 /**
 * @dev Deprecated. This function has issues similar to the ones found in
 * {IERC20-approve}, and its usage is discouraged.
 *
 * Whenever possible, use {safeIncreaseAllowance} and
 * {safeDecreaseAllowance} instead.
 */

Recommendation
8olidity : As suggested by the OpenZeppelin comment, replace safeApprove() with safeIncreaseAllowance()
or safeDecreaseAllowance() instead.

Client Response
It's a one-time operation, so it’s ok.

https://github.com/para-space/paraspace-core/blob/main/contracts/dependencies/openzeppelin/contracts/SafeERC20.sol#L40-L45

ParaSpace yAPE Competitive Security Assessment

19

PSY-7:Without from!=to check in
PYieldToken::_transfer::withdrawFee

Category Severity Code Reference Status Contributor

Logical Medium code/contracts/protocol/tokenizati
on/PYieldToken.sol#L62-L72
code/contracts/protocol/tokenizati
on/PYieldToken.sol#L140-L170
code/contracts/misc/AutoYieldApe
.sol#L409-L418

Fixed thereksfour,
8olidity

Code

ParaSpace yAPE Competitive Security Assessment

20

62: function _transfer(
63: address from,
64: address to,
65: uint256 amount,
66: bool validate
67:) internal override {
68: _updateUserIndex(from, -int256(amount));
69: _updateUserIndex(to, int256(amount));
70:
71: super._transfer(from, to, amount, validate);
72: }

140: function _updateUserIndex(address account, int256 balanceDiff) internal {
141: uint256 userBalance = balanceOf(account);
142: (uint256 lastAccruedIndex, uint256 latestYieldIndex) = IYieldInfo(
143: _underlyingAsset
144:).yieldIndex();
145: uint256 indexDiff = latestYieldIndex - _userYieldIndex[account];
146: uint256 pendingYield = _userPendingYield[account];
147: //update pending yield and user lock fee amount first if necessary
148: if (indexDiff > 0) {
149: if (userBalance > 0) {
150: uint256 accruedYield = (userBalance * indexDiff) / RAY;
151: pendingYield += accruedYield;
152: if (userBalance != _userLockFeeAmount[account]) {
153: _userLockFeeAmount[account] = userBalance;
154: }
155: _userPendingYield[account] = pendingYield;
156: }
157: _userYieldIndex[account] = latestYieldIndex;
158: }
159:
160: //if it's the withdraw or transfer balance out case
161: if (balanceDiff < 0) {
162: uint256 leftBalance = userBalance - (uint256(-balanceDiff));
163: uint256 userLockFeeBalance = _userLockFeeAmount[account];
164: //here we only need to update lock fee amount and charge fee when reduce user lock
fee amount
165: if (leftBalance < userLockFeeBalance) {
166: uint256 withdrawLockAmount = userLockFeeBalance - leftBalance;
167: uint256 withdrawFee = (withdrawLockAmount * lastAccruedIndex) /
168: RAY;

ParaSpace yAPE Competitive Security Assessment

21

169: _userLockFeeAmount[account] -= withdrawLockAmount;
170: _userPendingYield[account] -= withdrawFee;

409: function _transfer(
410: address sender,
411: address recipient,
412: uint256 amount
413:) internal override {
414: require(sender != recipient, "same address for transfer");
415: _updateYieldIndex(sender, -int256(amount));
416: _updateYieldIndex(recipient, int256(amount));
417: super._transfer(sender, recipient, amount);
418: }

Description
thereksfour : AutoYieldApe._transfer requires sender ! = recipient, which avoids charging withdrawFee in
_updateYieldIndex when sender==recipient.

However, in PYieldToken._transfer, there is no requirement that from ! = to, which means that when from == to, the
_transfer will execute normally and charge the withdrawalFee
8olidity : PYieLdToken.sol does not limit itself to transfer money to itself, when the user transfers money to himself,
it will call _updateUserIndex() to update

When balanceDiff is less than 0, the sender's _userLockFeeAmount and _userPendingYield will be updated.
But from a macro point of view, when you transfer money to yourself, this value should not be updated.

POC

// add PYieldToken.sol
function getPendingYield(address account) external view returns (uint) {
 return _userPendingYield[account];
}

// code/test/auto_yield_ape.spec.ts:
// add
536 console.log(await yApePToken.getPendingYield(user2.address)); // out 1794598679
537: console.log(await yApePToken.balanceOf(user2.address));
538: await
yApePToken.connect(user2.signer).transfer(user2.address,yApePToken.balanceOf(user2.address));
539 console.log(await yApePToken.getPendingYield(user2.address)); // out 0

The user's _userPendingYield is updated

Recommendation

ParaSpace yAPE Competitive Security Assessment

22

thereksfour : Consider requiring from != to in PYieldToken._transfer, or not calling _updateUserIndex when from == to.

 function _transfer(
 address from,
 address to,
 uint256 amount,
 bool validate
) internal override {
+ require(from != to, "same address for transfer");
 _updateUserIndex(from, -int256(amount));
 _updateUserIndex(to, int256(amount));

 super._transfer(from, to, amount, validate);
 }

8olidity : Limit yourself to sending tokens to yourself

Client Response
Fixed

ParaSpace yAPE Competitive Security Assessment

23

PSY-8: Pyieldtoken::_updateUserIndex() :
WithdrawLockAmount without pay withdrawFee

Category Severity Code Reference Status Contributor

Logical Low code/contracts/protocol/tokenizati
on/PYieldToken.sol#L170

Acknowledged 8olidity

Code

170: _userPendingYield[account] -= withdrawFee;

Description
8olidity : In Pyieldtoken::_updateUserIndex() , when banlanceDiff<0 , _userLockFeeAmount and
_userPendingYield will be updated, where the value of withdrawFee is calculated as follows

uint256 withdrawFee = (withdrawLockAmount * lastAccruedIndex) / RAY;

Among them, the value of RAY is 1e27, which is very large. Combined with the rounding feature of solidity, the
withdrawFee may be 0, that is to say, the attacker operates multiple times by manipulating the input value. Make
withdrawFee is 0. bypass fees

Recommendation
8olidity : Determine whether withdrawFee is 0

Client Response
It’s true, but attackers need to pay a transaction fee to do so, it has no incentive from an economic perspective.

ParaSpace yAPE Competitive Security Assessment

24

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,
disclaimer and limitation of liability) set forth in the Invoices, or the scope of services, and terms and conditions provided
to you (“Customer” or the “Company”) in connection with the Invoice. This report provided in connection with the services
set forth in the Invoices shall be used by the Company only to the extent permitted under the terms and conditions set
forth in the Invoice. This report may not be transmitted, disclosed, referred to or relied upon by any person for any
purposes, nor may copies be delivered to any other person other than the Company, without Secure3’s prior written
consent in each instance.

This report is not an “endorsement” or “disapproval” of any particular project or team. This report is not an indication of
the economics or value of any “product” or “asset” created by any team or project that contracts Secure3 to perform a
security assessment. This report does not provide any warranty or guarantee of free of bug of codes analyzed, nor do
they provide any indication of the technologies, business model or legal compliancy.

This report should not be used in any way to make decisions around investment or involvement with any particular
project. Instead, it represents an extensive assessing process intending to help our customers increase the quality of
their code and high-level consistency of implementation and business model, while reducing the risk presented by
cryptographic tokens and blockchain technology.

Secure3’s position on the final decisions over blockchain technologies and corresponding associated transactions is that
each company and individual are responsible for their own due diligence and continuous security.

The assessment services provided by Secure3 is subject to dependencies and under continuing development. The
assessment reports could include false positives, false negatives, and other unpredictable results. The services may
access, and depend upon, multiple layers of third-parties.

