
Compe��ve Security Assessment

ParaSpace V1.4 P3

Mar 26th, 2023

Secure3 secure3.io

$

ParaSpace V1.4 P3 Competitive Security Assessment

2

Summary 3

Overview 4

Audit Scope 5

Code Assessment Findings 6

PSV-1:MIN_TRAIT_MULTIPLIER should be 1e18 not 0e18 8

PSV-2:MarketplaceLogic._checkAllowance approves marketplace to use uint256.max amount of

creditToken, which allows the user to deplete the tokens in the POOL.

10

PSV-3:NFT listing price could be incorrectly calculated 14

PSV-4:_buyWithCredit/_acceptBidWithCredit no longer supports filling NFT orders with any

creditToken.

16

PSV-5: executeBurnMultiple should validate user is not address 0 20

PSV-6:safetransferfrom doesn't have the callback check 22

Disclaimer 24

ParaSpace V1.4 P3 Competitive Security Assessment

3

Summary

This report is prepared for the project to identify vulnerabilities and issues in the smart contract source code. A group of
NDA covered experienced security experts have participated in the Secure3’s Audit Contest to find vulnerabilities and
optimizations. Secure3 team has participated in the contest process as well to provide extra auditing coverage and
scrutiny of the finding submissions.

The comprehensive examination and auditing scope includes:

 • Cross checking contract implementation against functionalities described in the documents and white paper disclosed
by the project owner.

 • Contract Privilege Role Review to provide more clarity on smart contract roles and privilege.

 • Using static analysis tools to analyze smart contracts against common known vulnerabilities patterns.

 • Verify the code base is compliant with the most up-to-date industry standards and security best practices.

 • Comprehensive line-by-line manual code review of the entire codebase by industry experts.

The security assessment resulted in findings that are categorized in four severity levels: Critical, Medium, Low,
Informational. For each of the findings, the report has included recommendations of fix or mitigation for security and best
practices.

ParaSpace V1.4 P3 Competitive Security Assessment

4

Overview

Project Detail

Project Name ParaSpace V1.4 P3

Platform & Language Solidity

Codebase https://github.com/para-space/paraspace-core
audit commit - b0a957fc7b6df9109a8a617d7dddce102088d43c
final commit - 629e07165cbbf6679727d0f83fa8f72598d09d16

Audit Methodology Audit Contest
Business Logic and Code Review
Privileged Roles Review
Static Analysis

Code Vulnerability Review Summary

Vulnerability Level Total Reported Acknowledged Fixed Mitigated Declined

Critical 0 0 0 0 0 0

Medium 1 0 0 0 0 1

Low 3 0 0 1 0 2

Informational 2 0 2 0 0 0

ParaSpace V1.4 P3 Competitive Security Assessment

5

Audit Scope

File Commit Hash

contracts/protocol/tokenization/libraries/MintableERC
721Logic.sol

b0a957fc7b6df9109a8a617d7dddce102088d43c

contracts/protocol/tokenization/base/MintableIncentivi
zedERC721.sol

b0a957fc7b6df9109a8a617d7dddce102088d43c

contracts/protocol/libraries/logic/LiquidationLogic.sol b0a957fc7b6df9109a8a617d7dddce102088d43c

contracts/protocol/libraries/logic/GenericLogic.sol b0a957fc7b6df9109a8a617d7dddce102088d43c

contracts/protocol/tokenization/NToken.sol b0a957fc7b6df9109a8a617d7dddce102088d43c

contracts/protocol/libraries/logic/MarketplaceLogic.sol b0a957fc7b6df9109a8a617d7dddce102088d43c

ParaSpace V1.4 P3 Competitive Security Assessment

6

Code Assessment Findings

ID Name Category Severity Status Contributor

PSV-1 MIN_TRAIT_MULTIPLIER should be
1e18 not 0e18

Logical Low Declined thereksfour

PSV-2 MarketplaceLogic._checkAllowance
approves marketplace to use
uint256.max amount of creditToken,
which allows the user to deplete the
tokens in the POOL.

Logical Medium Declined thereksfour

PSV-3 NFT listing price could be incorrectly
calculated

Logical Informational Acknowled
ged

jayphbee

ParaSpace V1.4 P3 Competitive Security Assessment

7

PSV-4 _buyWithCredit/_acceptBidWithCredit
no longer supports filling NFT orders
with any creditToken.

Logical Low Fixed thereksfour

PSV-5 executeBurnMultiple should
validate user is not address 0

Logical Low Declined comcat

PSV-6 safetransferfrom doesn't have the
callback check

Logical Informational Acknowled
ged

comcat

ParaSpace V1.4 P3 Competitive Security Assessment

8

PSV-1:MIN_TRAIT_MULTIPLIER should be 1e18 not 0e18

Category Severity Code Reference Status Contributor

Logical Low code/contracts/protocol/tokenizati
on/libraries/MintableERC721Logic.
sol#L78-L79
code/contracts/protocol/tokenizati
on/libraries/MintableERC721Logic.
sol#L683-L689

Declined thereksfour

Code

78: uint256 internal constant MIN_TRAIT_MULTIPLIER = 0e18;
79:

683: function _checkTraitMultiplier(uint256 multiplier) private pure {
684: require(
685: multiplier >= MIN_TRAIT_MULTIPLIER &&
686: multiplier < MAX_TRAIT_MULTIPLIER,
687: Errors.INVALID_AMOUNT
688:);
689: }

Description
thereksfour : In MintableERC721Logic, MAX_TRAIT_MULTIPLIER and MIN_TRAIT_MULTIPLIER represent the upper
and lower bounds of the trait multiplier and are used in _checkTraitMultiplier. Since MIN_TRAIT_MULTIPLIER is 0, it
means that the admin can set the trait multiplier to less than 1e18, and since 1e18 is the floor price, the trait multiplier
should not be less than 1e18. This makes _checkTraitMultiplier unable to limit the trait multiplier.

ParaSpace V1.4 P3 Competitive Security Assessment

9

 * @dev This constant represents the maximum trait multiplier that a single tokenId can have
 * A value of 20e18 results in 20x of price
 */
 uint256 internal constant MAX_TRAIT_MULTIPLIER = 20e18;
 /**
 * @dev This constant represents the minimum trait multiplier that a single tokenId can have
 * A value of 1e18 results in no price multiplier
 */
 uint256 internal constant MIN_TRAIT_MULTIPLIER = 0e18;
...
 function _checkTraitMultiplier(uint256 multiplier) private pure {
 require(
 multiplier >= MIN_TRAIT_MULTIPLIER &&
 multiplier < MAX_TRAIT_MULTIPLIER,
 Errors.INVALID_AMOUNT
);
 }

Recommendation
thereksfour :

- uint256 internal constant MIN_TRAIT_MULTIPLIER = 0e18;
+ uint256 internal constant MIN_TRAIT_MULTIPLIER = 1e18;

Client Response
Since percentDiv is dividing a value that is less than 1, current implementation actually provid better precision

ParaSpace V1.4 P3 Competitive Security Assessment

10

PSV-2:MarketplaceLogic._checkAllowance approves
marketplace to use uint256.max amount of creditToken, which
allows the user to deplete the tokens in the POOL.

Category Severity Code Reference Status Contributor

Logical Medium code/contracts/misc/marketplaces
/LooksRareAdapter.sol#L68-L75
code/contracts/dependencies/look
srare/contracts/LooksRareExchan
ge.sol#L218-L225
code/contracts/protocol/libraries/l
ogic/MarketplaceLogic.sol#L615-
L620
code/contracts/protocol/libraries/l
ogic/MarketplaceLogic.sol#L688-
L707

Declined thereksfour

Code

ParaSpace V1.4 P3 Competitive Security Assessment

11

68: consideration[0] = ConsiderationItem(
69: itemType,
70: token,
71: 0,
72: makerAsk.price, // TODO: take minPercentageToAsk into account
73: makerAsk.price,
74: payable(takerBid.taker)
75:);

218: _transferFeesAndFundsWithWETH(
219: makerAsk.strategy,
220: makerAsk.collection,
221: tokenId,
222: makerAsk.signer,
223: takerBid.price,
224: makerAsk.minPercentageToAsk
225:);

615: function _checkAllowance(address token, address operator) internal {
616: uint256 allowance = IERC20(token).allowance(address(this), operator);
617: if (allowance == 0) {
618: IERC20(token).safeApprove(operator, type(uint256).max);
619: }
620: }

688: function _validateAndGetPrice(
689: DataTypes.ExecuteMarketplaceParams memory params,
690: MarketplaceLocalVars memory vars
691:) internal pure returns (uint256 price) {
692: for (uint256 i = 0; i < params.orderInfo.consideration.length; i++) {
693: ConsiderationItem memory item = params.orderInfo.consideration[i];
694: require(
695: item.startAmount == item.endAmount,
696: Errors.INVALID_MARKETPLACE_ORDER
697:);
698: require(
699: item.itemType == ItemType.ERC20 ||
700: (vars.isETH && item.itemType == ItemType.NATIVE),
701: Errors.INVALID_ASSET_TYPE
702:);
703: require(
704: item.token == params.credit.token,

ParaSpace V1.4 P3 Competitive Security Assessment

12

705: Errors.CREDIT_DOES_NOT_MATCH_ORDER
706:);
707: price += item.startAmount;

Description
thereksfour : Take Looksrare for example. In _buyWithCredit, the taker needs to provide makerAsk.price amount of
creditToken.

 consideration[0] = ConsiderationItem(
 itemType,
 token,
 0,
 makerAsk.price, // TODO: take minPercentageToAsk into account
 makerAsk.price,
 payable(takerBid.taker)
);
...
 function _validateAndGetPrice(
 DataTypes.ExecuteMarketplaceParams memory params,
 MarketplaceLocalVars memory vars
) internal pure returns (uint256 price) {
 for (uint256 i = 0; i < params.orderInfo.consideration.length; i++) {
 ConsiderationItem memory item = params.orderInfo.consideration[i];
 require(
 item.startAmount == item.endAmount,
 Errors.INVALID_MARKETPLACE_ORDER
);
 require(
 item.itemType == ItemType.ERC20 ||
 (vars.isETH && item.itemType == ItemType.NATIVE),
 Errors.INVALID_ASSET_TYPE
);
 require(
 item.token == params.credit.token,
 Errors.CREDIT_DOES_NOT_MATCH_ORDER
);
 price += item.startAmount;

But in LooksRareExchange.matchBidWithTakerAsk, the actual takerAsk.price will be used as the deal price.

ParaSpace V1.4 P3 Competitive Security Assessment

13

 _transferFeesAndFunds(
 makerBid.strategy,
 makerBid.collection,
 tokenId,
 makerBid.currency,
 makerBid.signer,
 takerAsk.taker,
 takerAsk.price, // @audit: deal price
 takerAsk.minPercentageToAsk
);

If takerAsk.price > makerAsk.price (in Looksrare, the maker can use any strategy to make it valid), the taker can use the
token in POOL to fill the order since _checkAllowance approves the marketplace to use uint256.max amount of
creditToken.

 function _checkAllowance(address token, address operator) internal {
 uint256 allowance = IERC20(token).allowance(address(this), operator);
 if (allowance == 0) {
 IERC20(token).safeApprove(operator, type(uint256).max);
 }
 }

Consider the following scenario. POOL has 100 creditTokens. alice's makerAsk.price == 100 on Looksrare. bob offers
takerAsk.price = 200 to fill the order. Since makerAsk.price == 100, bob only needs to provide 100 creditTokens and
Looksrare will send all 200 (100+100) creditTokens in the POOL to alice. Since POOL is not designed to keep tokens, it
should be medium risk

Recommendation
thereksfour : Consider only approving the marketplace to use the vars.price amount of creditTokens in
_checkAllowance. Change to

 function _checkAllowance(address token, address operator, uint256 amount) internal {
 IERC20(token).safeApprove(operator, 0);
 IERC20(token).safeApprove(operator, amount);
 }

Client Response
We allow trait multiplier to be <1 for specific void NFTs

ParaSpace V1.4 P3 Competitive Security Assessment

14

PSV-3:NFT listing price could be incorrectly calculated

Category Severity Code Reference Status Contributor

Logical Informational code/contracts/protocol/libraries/l
ogic/MarketplaceLogic.sol#L688

Acknowledged jayphbee

Code

688: function _validateAndGetPrice(

Description
jayphbee : NFT listing price is calculated in _validateAndGetPrice

 function _validateAndGetPrice(
 DataTypes.ExecuteMarketplaceParams memory params,
 MarketplaceLocalVars memory vars
) internal pure returns (uint256 price) {
 for (uint256 i = 0; i < params.orderInfo.consideration.length; i++) {
 ConsiderationItem memory item = params.orderInfo.consideration[i];
 require(
 item.startAmount == item.endAmount,
 Errors.INVALID_MARKETPLACE_ORDER
);
 require(
 item.itemType == ItemType.ERC20 ||
 (vars.isETH && item.itemType == ItemType.NATIVE),
 Errors.INVALID_ASSET_TYPE
);
 require(
 item.token == params.credit.token,
 Errors.CREDIT_DOES_NOT_MATCH_ORDER
);
 price += item.startAmount;
 }
 }

The itemType must be ERC20 or NATIVE . ERC20 and NATIVE could have different decimals, but price is
accumulated without differentiating it. Thus NFT listing price could be incorrectly calculated.

ParaSpace V1.4 P3 Competitive Security Assessment

15

Recommendation
jayphbee : check ERC20 decimals to scale up or scale down.

Client Response
It's intended for optimizing gas cost.

ParaSpace V1.4 P3 Competitive Security Assessment

16

PSV-4:_buyWithCredit/_acceptBidWithCredit no longer
supports filling NFT orders with any creditToken.

Category Severity Code Reference Status Contributor

Logical Low code/contracts/protocol/libraries/l
ogic/MarketplaceLogic.sol#L440-
L465

Fixed thereksfour

Code

440: function _flashSupplyFor(
441: DataTypes.PoolStorage storage ps,
442: DataTypes.ExecuteMarketplaceParams memory params,
443: MarketplaceLocalVars memory vars,
444: address seller
445:) internal {
446: if (vars.isETH) {
447: return; // impossible to supply ETH on behalf of the
448: }
449:
450: DataTypes.ReserveData storage reserve = ps._reserves[vars.creditToken];
451: DataTypes.UserConfigurationMap storage sellerConfig = ps._usersConfig[
452: seller
453:];
454: DataTypes.ReserveCache memory reserveCache = reserve.cache();
455: uint16 reserveId = reserve.id; // cache to reduce one storage read
456:
457: reserve.updateState(reserveCache);
458:
459: uint256 supplyAmount = Math.min(
460: IERC20(vars.creditToken).allowance(seller, address(this)),
461: vars.price.percentMul(DEFAULT_SUPPLY_RATIO)
462:);
463: if (supplyAmount == 0) {
464: return;
465: }

ParaSpace V1.4 P3 Competitive Security Assessment

17

Description
thereksfour : In the previous implementation of _buyWithCredit/_acceptBidWithCredit, when creditAmount == 0, the user
could use creditToken that did not have a corresponding PToken to fill the order, which made it possible because when
creditAmount == 0, there was no need to borrow any PToken. However, in the current implementation, even if
creditAmount == 0 and supplyAmount == 0, _flashSupplyFor will try to get the PToken corresponding to the creditToken.

 function _flashSupplyFor(
 DataTypes.PoolStorage storage ps,
 DataTypes.ExecuteMarketplaceParams memory params,
 MarketplaceLocalVars memory vars,
 address seller
) internal {
 if (vars.isETH) {
 return; // impossible to supply ETH on behalf of the
 }

 DataTypes.ReserveData storage reserve = ps._reserves[vars.creditToken];
 DataTypes.UserConfigurationMap storage sellerConfig = ps._usersConfig[
 seller
];
 DataTypes.ReserveCache memory reserveCache = reserve.cache();
 uint16 reserveId = reserve.id; // cache to reduce one storage read

 reserve.updateState(reserveCache);

 uint256 supplyAmount = Math.min(
 IERC20(vars.creditToken).allowance(seller, address(this)),
 vars.price.percentMul(DEFAULT_SUPPLY_RATIO)
);
 if (supplyAmount == 0) {
 return;
 }

And if the creditToken does not have a corresponding PToken, _flashSupplyFor fails, thus reverting the entire transaction.

ParaSpace V1.4 P3 Competitive Security Assessment

18

 function cache(DataTypes.ReserveData storage reserve)
 internal
 view
 returns (DataTypes.ReserveCache memory)
 {
 DataTypes.ReserveCache memory reserveCache;

 reserveCache.reserveConfiguration = reserve.configuration;
 reserveCache.xTokenAddress = reserve.xTokenAddress;

 (, , , , DataTypes.AssetType reserveAssetType) = reserveCache
 .reserveConfiguration
 .getFlags(); // @audit: revert here

While the protocol should encourage the user to use the creditToken supported by the protocol, this should not be
mandatory and should allow the user to use other creditTokens to fill NFT orders if the collateral is sufficient

Recommendation
thereksfour : Consider that the PToken corresponding to the creditToken is no longer obtained when supplyAmount == 0
in _flashSupplyFor()

ParaSpace V1.4 P3 Competitive Security Assessment

19

 function _flashSupplyFor(
 DataTypes.PoolStorage storage ps,
 DataTypes.ExecuteMarketplaceParams memory params,
 MarketplaceLocalVars memory vars,
 address seller
) internal {
 if (vars.isETH) {
 return; // impossible to supply ETH on behalf of the
 }
+ uint256 supplyAmount = Math.min(
+ IERC20(vars.creditToken).allowance(seller, address(this)),
+ vars.price.percentMul(DEFAULT_SUPPLY_RATIO)
+);
+ if (supplyAmount == 0) {
+ return;
+ }

 DataTypes.ReserveData storage reserve = ps._reserves[vars.creditToken];
 DataTypes.UserConfigurationMap storage sellerConfig = ps._usersConfig[
 seller
];
 DataTypes.ReserveCache memory reserveCache = reserve.cache();
 uint16 reserveId = reserve.id; // cache to reduce one storage read

 reserve.updateState(reserveCache);

- uint256 supplyAmount = Math.min(
- IERC20(vars.creditToken).allowance(seller, address(this)),
- vars.price.percentMul(DEFAULT_SUPPLY_RATIO)
-);
- if (supplyAmount == 0) {
- return;
- }

Client Response
We confirm this issue.

ParaSpace V1.4 P3 Competitive Security Assessment

20

PSV-5: executeBurnMultiple should validate user is not
address 0

Category Severity Code Reference Status Contributor

Logical Low code/contracts/protocol/tokenizati
on/libraries/MintableERC721Logic.
sol#L407

Declined comcat

Code

407: function executeBurnMultiple(

Description
comcat : executeBurnMultiple normally burn user's Ntoken, inside its implementation, it first check the user is the owner
of the tokenId. however, it doesn't check whether the tokenId exists first. by passing the user to address zero, and an non
exists tokenId, it will pass the check

address owner = erc721Data.owners[tokenId];
require(owner == user, "not the owner of Ntoken");

and it will call the _removeTokenFromAllTokensEnumeration function, which will swap and pop the tokenId stored
inside.

Recommendation
comcat : add another check:

ParaSpace V1.4 P3 Competitive Security Assessment

21

function executeBurnMultiple(
 MintableERC721Data storage erc721Data,
 IPool POOL,
 bool ATOMIC_PRICING,
 address user,
 uint256[] calldata tokenIds
) external returns (uint64, uint64) {
 LocalVars memory vars = _cache(erc721Data, user);
 uint256 oldTotalSupply = erc721Data.allTokens.length;
 bool shouldUpdateUserAvgMultiplier = _shouldUpdateUserAvgMultiplier(
 erc721Data,
 ATOMIC_PRICING
);

 for (uint256 index = 0; index < tokenIds.length; index++) {
 uint256 tokenId = tokenIds[index];
 address owner = erc721Data.owners[tokenId];
 require(owner == user, "not the owner of Ntoken");
+ require(owner != address(0), "not address zero");

Client Response
We don't need to validate for burn because mint & transfer will guarantee the receiver is not address 0.

ParaSpace V1.4 P3 Competitive Security Assessment

22

PSV-6:safetransferfrom doesn't have the callback check

Category Severity Code Reference Status Contributor

Logical Informational code/contracts/protocol/tokenizati
on/base/MintableIncentivizedERC7
21.sol#L380

Acknowledged comcat

Code

380: function _safeTransfer(

Description
comcat : inside the MintableIncentivizedERC721 contract, the behavior of safeTransferFrom is the same as the
transferFrom ,

function _safeTransfer(
 address from,
 address to,
 uint256 tokenId,
 bytes memory
) internal virtual {
 _transfer(from, to, tokenId);
 }

which doesn't follow the EIP-721 standard, which requires the safetransferfrom function to check the to address has the
corresponding callback function onERC721Received .

Recommendation
comcat : follow the standard, add the check to to address for the safetransferfrom

function _safeTransfer(
 address from,
 address to,
 uint256 tokenId,
 bytes memory
) internal virtual {
 _transfer(from, to, tokenId);
+ require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non
ERC721Receiver implementer");
 }

ParaSpace V1.4 P3 Competitive Security Assessment

23

Client Response
It's intended behaviour at the moment for reducing re-entrancy probability.

ParaSpace V1.4 P3 Competitive Security Assessment

24

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,
disclaimer and limitation of liability) set forth in the Invoices, or the scope of services, and terms and conditions provided
to you (“Customer” or the “Company”) in connection with the Invoice. This report provided in connection with the services
set forth in the Invoices shall be used by the Company only to the extent permitted under the terms and conditions set
forth in the Invoice. This report may not be transmitted, disclosed, referred to or relied upon by any person for any
purposes, nor may copies be delivered to any other person other than the Company, without Secure3’s prior written
consent in each instance.

This report is not an “endorsement” or “disapproval” of any particular project or team. This report is not an indication of
the economics or value of any “product” or “asset” created by any team or project that contracts Secure3 to perform a
security assessment. This report does not provide any warranty or guarantee of free of bug of codes analyzed, nor do
they provide any indication of the technologies, business model or legal compliancy.

This report should not be used in any way to make decisions around investment or involvement with any particular
project. Instead, it represents an extensive assessing process intending to help our customers increase the quality of
their code and high-level consistency of implementation and business model, while reducing the risk presented by
cryptographic tokens and blockchain technology.

Secure3’s position on the final decisions over blockchain technologies and corresponding associated transactions is that
each company and individual are responsible for their own due diligence and continuous security.

The assessment services provided by Secure3 is subject to dependencies and under continuing development. The
assessment reports could include false positives, false negatives, and other unpredictable results. The services may
access, and depend upon, multiple layers of third-parties.

