
Paraspace
Security Assessment

November 16, 2022

Prepared for:

Cheng Jiang

Ivan Solomonoff

Paraspace

Prepared by: Will Song, Tjaden Hess, and Samuel Moelius



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Paraspace Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


Notices and Remarks

Copyright and Distribution
© 2022 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Paraspace
under the terms of the project statement of work and has been made public at Paraspace’s
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Paraspace Security Assessment
PUBLIC



Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 5

Project Summary 7

Project Goals 8

Project Targets 9

Project Coverage 10

Codebase Maturity Evaluation 12

Summary of Findings 14

Detailed Findings 16

1. Unconventional test structure 16

2. Insufficient event generation 19

3. Missing supportsInterface functions 22

4. ERC1155 asset type is defined but not implemented 24

5. executeMintToTreasury silently skips non-ERC20 tokens 26

6. getReservesData does not set all AggregatedReserveData fields 28

7. Excessive type repetition in returned tuples 30

8. Incorrect grace period could result in denial of service 34

9. Incorrect accounting in _transferCollaterizable 36

10. IPriceOracle interface is used only in tests 39

11. Manual ERC721 transfers could be claimed as NTokens by anyone 41

Trail of Bits 3 Paraspace Security Assessment
PUBLIC



12. Inconsistent behavior between NToken and PToken liquidations 44

13. Missing asset type checks in ValidationLogic library 46

14. Uniswap v3 NFT flash claims may lead to undercollateralization 48

15. Non-injective hash encoding in getClaimKeyHash 50

Summary of Recommendations 52

A. Vulnerability Categories 53

B. Code Maturity Categories 55

C. Non-Security-Related Findings 57

Trail of Bits 4 Paraspace Security Assessment
PUBLIC



Executive Summary

Engagement Overview
Paraspace engaged Trail of Bits to review the security of its decentralized lending protocol.
From October 3 to October 24, 2022, a team of three consultants conducted a security
review of the client-provided source code, with seven person-weeks and two person-days
of effort. Details of the project’s timeline, test targets, and coverage are provided in
subsequent sections of this report.

Project Scope
Our testing efforts were focused on the identification of flaws that could result in a
compromise of confidentiality, integrity, or availability of the target system. We conducted
this audit with full knowledge of the system, with access to both the source code and
documentation. We performed static and dynamic testing of the target system and its
codebase, using both automated and manual processes.

Summary of Findings
The audit uncovered significant flaws that could impact system confidentiality, integrity, or
availability. A summary of the findings and details on notable findings are provided below.

Trail of Bits 5 Paraspace Security Assessment
PUBLIC



EXPOSURE ANALYSIS

Severity Count

High 2

Medium 0

Low 5

Informational 8

Undetermined 0

CATEGORY BREAKDOWN

Category Count

Access Controls 2

Auditing and Logging 1

Cryptography 1

Data Validation 3

Denial of Service 1

Error Reporting 1

Testing 1

Undefined Behavior 5

Notable Findings
Trail of Bits discovered flaws that allow unintended interactions to result in stolen assets.

● TOB-PARASPACE-11
Users are able to manually transfer ERC721 assets to the NToken contract, a
contract they regularly interact with, which allows attackers to mint their own
NTokens for any erroneously transferred ERC721 assets.

● TOB-PARASPACE-14
Flash claims of Uniswap NFTs allow the flash claim recipient to withdraw liquidity
from the underlying position, leading to undercollateralization and loss of protocol
funds.

Trail of Bits 6 Paraspace Security Assessment
PUBLIC



Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Mary O'Brien, Project Manager
dan@trailofbits.com mary.obrien@trailofbits.com

The following engineers were associated with this project:

Will Song, Consultant Tjaden Hess, Consultant
will.song@trailofbits.com tjaden.hess@trailofbits.com

Samuel Moelius, Consultant
samuel.moelius@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

September 22, 2022 Pre-project kickoff call

October 11, 2022 Status update meeting #1

October 18, 2022 Status update meeting #2

October 25, 2022 Delivery of report draft

October 25, 2022 Final report readout

November 16, 2022 Delivery of final report

Trail of Bits 7 Paraspace Security Assessment
PUBLIC

mailto:dan@trailofbits.com
mailto:mary.obrien@trailofbits.com
mailto:will.song@trailofbits.com
mailto:tjaden.hess@trailofbits.com
mailto:samuel.moelius@trailofbits.com


Project Goals

The engagement was scoped to provide a security assessment of the Paraspace
decentralized lending protocol. Specifically, we sought to answer the following
non-exhaustive list of questions:

● Could the value of positions be artificially inflated so as to undercollateralize
borrowing?

● Are the protocol’s APIs designed to mitigate the risk of misuse by users and
malicious parties?

● Are cryptographic primitives used appropriately and in a misuse-resistant manner?

● Are proper access controls in place to restrict the misuse of protocol funds?

● Is sufficient testing implemented to ensure the correct operation of the smart
contracts?

● Are NTokens and PTokens minted and burned correctly?

● Are the price calculations for Uniswap v3 NFTs and ERC721 assets accurate?

● Could flash claims put users’ NFTs at risk of being stolen?

In addition to answering the above questions, we sought to investigate security-relevant
areas of interest listed in the ”Audit Technical Documentation” provided by Paraspace.

Trail of Bits 8 Paraspace Security Assessment
PUBLIC

https://parallelfinance.notion.site/Audit-Technical-Documentation-0a107270dabe45d2b66a076e0bdaa943


Project Targets

The engagement involved a review and testing of the following target.

“Para-Space NFT Money Market”

Repository https://github.com/para-space/paraspace-core

Versions 9bacd4d6362bdf9f87c3b6afed97bbcc3145f11d
4d981e53a06c7188547eecbe1acd8867753c00b0

Type Solidity

Platform Ethereum

Trail of Bits 9 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core
https://github.com/para-space/paraspace-core/commit/9bacd4d6362bdf9f87c3b6afed97bbcc3145f11d
https://github.com/para-space/paraspace-core/commit/4d981e53a06c7188547eecbe1acd8867753c00b0


Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● Manual analysis of the source code, documentation, and test cases

● Static analysis of the source code with Slither and triaging of the results

The following table lists the in-scope Paraspace components, outlined in the “Audit
Technical Documentation”, and indicates the extent of each component’s coverage:

Audit Scope Status

NFT Supply/Borrow Covered

ERC721 Oracle Partially Covered

UniswapV3 Covered

MoonBirds Covered

Rebasing Tokens Not Covered

NFT Liquidation Engine Covered

Dutch Auction Partially Covered

NFT Flash Claim Covered

NFT Credit Marketplace Partially Covered

Accept offers Partially Covered

Atomic Tokens Limit Covered

Pool Proxy Not Covered

Trail of Bits 10 Paraspace Security Assessment
PUBLIC

https://parallelfinance.notion.site/Audit-Technical-Documentation-0a107270dabe45d2b66a076e0bdaa943
https://parallelfinance.notion.site/Audit-Technical-Documentation-0a107270dabe45d2b66a076e0bdaa943


Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. During this project, we were unable to perform comprehensive testing of the
following system elements, which may warrant further review:

● The manual intervention needed to trigger the Dutch auction process

● The upgradeability and safety of the pool proxy contract

● Opportunities to manipulate prices

● Rebasing tokens

● The NFT credit marketplace

● The “accept offers” feature

Trail of Bits 11 Paraspace Security Assessment
PUBLIC



Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic We found no issues related to arithmetic. Satisfactory

Auditing Some critical operations emit events only in subordinate
operations (TOB-PARASPACE-2).

Moderate

Authentication /
Access Controls

We found significant issues related to access controls.
The supplyERC721FromNToken function does not verify
its caller, allowing malicious users to steal ERC721 tokens
that were transferred to the NToken contract
(TOB-PARASPACE-11). Flash claims for Uniswap v3 NFTs
are currently nonfunctional, seemingly by accident,
because of functionality in the NTokenUniswapV3
contract (TOB-PARASPACE-14)

Moderate

Complexity
Management

Several of the issues we identified are related to features
that have been only partially implemented
(TOB-PARASPACE-3, TOB-PARASPACE-4,
TOB-PARASPACE-5, TOB-PARASPACE-6,
TOB-PARASPACE-7, TOB-PARASPACE-13). Complex
features can interact in unexpected ways
(TOB-PARASPACE-14). Additionally, the repository should
be organized in a way that distinguishes code intended
only for testing (TOB-PARASPACE-10).

Weak

Cryptography
and Key
Management

Except for the minor encoding issue described in
TOB-PARASPACE-15, hashing, signature verification, and
message encoding are implemented clearly and
maturely.

Satisfactory

Trail of Bits 12 Paraspace Security Assessment
PUBLIC



Decentralization The code features several “administrative” roles (e.g.,
“pool admin,” “emergency admin,” and “risk admin”). The
contracts are upgradeable via a proxy mechanism, which
allows the Paraspace team to halt or change the behavior
of the contracts at any time. Centralized off-chain price
oracles are used; a compromised oracle could allow
attackers to drain funds by taking out undercollateralized
loans.

Weak

Documentation The project has reasonable documentation describing its
goals and philosophy. However, the project would benefit
from additional documentation describing its internals.
For example, to the best of our knowledge, most of the
descriptions in the ”Audit Technical Documentation” do
not appear in any public document.

Moderate

Front-Running
Resistance

We found no issues related to front-running. Satisfactory

Low-Level
Manipulation

We found no issues related to low-level manipulation. Satisfactory

Testing and
Verification

All tests must be initialized before any one test can be
run. This arrangement is not scalable
(TOB-PARASPACE-1). Some tests contain bugs
(TOB-PARASPACE-1, TOB-PARASPACE-9). On the other
hand, test coverage is relatively high, both in terms of
lines covered and scenarios considered.

Moderate

Trail of Bits 13 Paraspace Security Assessment
PUBLIC

https://docs.para.space/para-space/para-space/readme
https://parallelfinance.notion.site/Audit-Technical-Documentation-0a107270dabe45d2b66a076e0bdaa943


Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Unconventional test structure Testing Informational

2 Insufficient event generation Auditing and
Logging

Low

3 Missing supportsInterface functions Data Validation Low

4 ERC1155 asset type is defined but not
implemented

Undefined
Behavior

Informational

5 executeMintToTreasury silently skips non-ERC20
tokens

Error Reporting Low

6 getReservesData does not set all
AggregatedReserveData fields

Undefined
Behavior

Low

7 Excessive type repetition in returned tuples Undefined
Behavior

Informational

8 Incorrect grace period could result in denial of
service

Denial of Service Low

9 Incorrect accounting in _transferCollaterizable Undefined
Behavior

Informational

10 IPriceOracle interface is used only in tests Access Controls Informational

11 Manual ERC721 transfers could be claimed as
NTokens by anyone

Access Controls High

12 Inconsistent behavior between NToken and
PToken liquidations

Undefined
Behavior

Informational

Trail of Bits 14 Paraspace Security Assessment
PUBLIC



13 Missing asset type checks in ValidationLogic
library

Data Validation Informational

14 Uniswap v3 NFT flash claims may lead to
undercollateralization

Data Validation High

15 Non-injective hash encoding in getClaimKeyHash Cryptography Informational

Trail of Bits 15 Paraspace Security Assessment
PUBLIC



Detailed Findings

1. Unconventional test structure

Severity: Informational Difficulty: High

Type: Testing Finding ID: TOB-PARASPACE-1

Target: test-suites

Description
Aspects of the Paraspace tests make them difficult to run. Tests that are difficult to run are
less likely to be run.

First, the Paraspace tests are configured to initialize all tests before any single test can be
run. Therefore, even simple tests incur the initialization costs of the most expensive tests.
Such a design hinders development.

Figure 1.1 shows the first 25 lines that are output during test initialization. Approximately
270 lines are output before the first test is run. As shown in the figure, several ERC20 and
ERC721 tokens are deployed during initialization. These steps are unnecessary in many
testing situations, such as if a user wants to run a test that does not involve these tokens.

- Environment
- Network : hardhat

-> Deploying test environment...
------------ step 00 done ------------
deploying now  DAI
deploying now  WETH
deploying now  USDC
deploying now  USDT
deploying now  WBTC
deploying now  stETH
deploying now  APE
deploying now  aWETH
deploying now  cETH
deploying now  PUNK
------------ step 0A done ------------
deploying now  WPUNKS
deploying now  BAYC
deploying now  MAYC
deploying now  DOODLE
deploying now  AZUKI
deploying now  CLONEX

Trail of Bits 16 Paraspace Security Assessment
PUBLIC



deploying now  MOONBIRD
deploying now  MEEBITS
deploying now  OTHR
deploying now  UniswapV3
...

Figure 1.1: The first 25 lines emitted by Paraspace tests

Second, the paraspace-core repository uses the paraspace-deploy repository as a Git
submodule and relies on it when being built and tested. However, while the former is
public, the latter is private. Therefore, paraspace-core can be built or tested only by those
with access to paraspace-deploy.

Finally, some tests use nested it calls (figure 1.2), which are not supported by Mocha.

it("deposited aWETH should have balance multiplied by rebasing index", async () =>
{

...
it("should be able to supply aWETH and mint rebasing PToken", async () => {
...

});

it("expect the scaled balance to be the principal balance multiplied by Aave pool
liquidity index divided by RAY (2^27)", async () => {

...
});

});

Figure 1.2: test-suites/rebasing.spec.ts#L125–L165

Developers should strive to implement testing that thoroughly covers the project and tests
against both bad and expected inputs. Having robust unit and integration tests can greatly
increase both developers’ and users’ confidence in the code’s functionality. However, tests
cannot benefit the system if they are not actually run. Therefore, tests should be made as
easy to run as possible.

Exploit Scenario
Alice, a Paraspace developer, develops fewer tests than she otherwise would because she
is frustrated by the time required to run the tests. Paraspace’s test coverage suffers as a
result.

Recommendations
Short term, take the following steps:

● Adopt a more tailored testing solution that deploys only the resources needed to
run any given test.

Trail of Bits 17 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core
https://github.com/para-space/paraspace-deploy
https://github.com/para-space/paraspace-core
https://github.com/para-space/paraspace-deploy
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/test-suites/rebasing.spec.ts#L125-L165


● Either make the paraspace-deploy repository public or eliminate
paraspace-core’s reliance on paraspace-deploy.

● Rewrite the tests in rebasing.spec.ts to eliminate the nested it calls.

Making tests easier to run will help ensure that they are actually run.

Long term, consider timing individual tests in the continuous integration process. Doing so
will help to identify tests with extreme resource requirements.

References
● Pull request #4525 in mochajs/mocha: Throw on nested it call

● Stack Overflow: Mocha test case - are nested it( ) functions kosher?

Trail of Bits 18 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-deploy
https://github.com/para-space/paraspace-core
https://github.com/para-space/paraspace-deploy
https://github.com/mochajs/mocha/issues/4525
https://stackoverflow.com/questions/32749262/mocha-test-case-are-nested-it-functions-kosher


2. Insu�cient event generation

Severity: Low Difficulty: Low

Type: Auditing and Logging Finding ID: TOB-PARASPACE-2

Target: Various targets

Description
Events generated during contract execution aid in monitoring, baselining of behavior, and
detection of suspicious activity. Without events, users and blockchain-monitoring systems
cannot easily detect behavior that falls outside the baseline conditions. Consequently,
malfunctioning contracts or attacks may not be detected.

Multiple critical operations do not emit events. As a result, it will be difficult to review the
correct behavior of the contracts once they have been deployed.

Generally speaking, an operation should emit an event if it involves any of the following:

● A transfer of an asset

● A change to a contract parameter

● Privileged roles

Moreover, it is not always sufficient to rely on events emitted by subordinate operations.
For example, the following emergencyTokenTransfer operations should emit their own
specific events:

● MoonBirdsGateway.emergencyTokenTransfer

● WETHGateway.emergencyTokenTransfer

● UniswapV3Gateway.emergencyTokenTransfer

● WPunkGateway.emergencyTokenTransfer

In addition to the above, the following events are defined but never emitted. We
recommend reviewing this list to determine whether the events should be emitted.

● AggregatorInterface.AnswerUpdated

● AggregatorInterface.NewRound

Trail of Bits 19 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/MoonBirdsGateway.sol#L77
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/WETHGateway.sol#L249
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/UniswapV3Gateway.sol#L71
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/WPunkGateway.sol#L246
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/dependencies/chainlink/AggregatorInterface.sol#L16
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/dependencies/chainlink/AggregatorInterface.sol#L22


● IEACAggregatorProxy.AnswerUpdated

● IEACAggregatorProxy.AnswerUpdated

● IEACAggregatorProxy.NewRound

● IEACAggregatorProxy.NewRound

● INonfungiblePositionManager.DecreaseLiquidity

● INonfungiblePositionManager.IncreaseLiquidity

● IRewardController.ClaimerSet

● IRewardController.RewardsAccrued

● IRewardController.RewardsClaimed

● IRewardController.RewardsClaimed

● IRewardsController.ClaimerSet

● IRewardsController.RewardOracleUpdated

● IRewardsController.RewardsClaimed

● IRewardsController.TransferStrategyInstalled

● IRewardsDistributor.Accrued

● IRewardsDistributor.AssetConfigUpdated

● IRewardsDistributor.EmissionManagerUpdated

● ITransferStrategyBase.EmergencyWithdrawal

Exploit Scenario
An attacker discovers a vulnerability in the WETHGateway contract and is able to modify its
execution. Because no events are generated from the attacker’s actions, the behavior goes
unnoticed until there is follow-on damage, such as financial loss.

Recommendations
Short term, add events for all operations that may contribute to a higher level of
monitoring and alerting.

Long term, consider using a blockchain-monitoring system to track any suspicious behavior
in the contracts. The system relies on several contracts to behave as expected. A

Trail of Bits 20 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/interfaces/IEACAggregatorProxy.sol#L17
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/interfaces/IEACAggregatorProxy.sol#L17
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/interfaces/IEACAggregatorProxy.sol#L22
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/interfaces/IEACAggregatorProxy.sol#L22
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/dependencies/uniswap/INonfungiblePositionManager.sol#L42
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/dependencies/uniswap/INonfungiblePositionManager.sol#L31
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/interfaces/IRewardController.sol#L42
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/interfaces/IRewardController.sol#L15
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/interfaces/IRewardController.sol#L17
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/interfaces/IRewardController.sol#L30
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/interfaces/IRewardsController.sol#L20
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/interfaces/IRewardsController.sol#L53
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/interfaces/IRewardsController.sol#L30
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/interfaces/IRewardsController.sol#L43
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/interfaces/IRewardsDistributor.sol#L39
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/interfaces/IRewardsDistributor.sol#L20
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/interfaces/IRewardsDistributor.sol#L53
https://github.com/para-space/paraspace-core/tree/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/interfaces/ITransferStrategyBase.sol#L5


monitoring mechanism for critical events would quickly detect any compromised system
components.

Trail of Bits 21 Paraspace Security Assessment
PUBLIC



3. Missing supportsInterface functions

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-PARASPACE-3

Target: Various contracts

Description
According to EIP-165, a contract’s implementation of the supportsInterface function
should return true for the interfaces that the contract supports. Outside of the
dependencies and mocks directories, only one Paraspace contract has a
supportsInterface function.

For example, each of the following contracts includes an onERC721Received function;
therefore, they should have a supportsInterface function that returns true for the
ERC721TokenReceiver interface ( PoolCore’s onERC721Received implementation
appears in figure 3.1):

● contracts/ui/MoonBirdsGateway.sol

● contracts/ui/UniswapV3Gateway.sol

● contracts/ui/WPunkGateway.sol

● contracts/protocol/tokenization/NToken.sol

● contracts/protocol/tokenization/NTokenUniswapV3.sol

● contracts/protocol/tokenization/NTokenMoonBirds.sol

● contracts/protocol/pool/PoolCore.sol

// This function is necessary when receive erc721 from looksrare
function onERC721Received(

address,
address,
uint256,
bytes memory

) external virtual returns (bytes4) {
return this.onERC721Received.selector;

}

Figure 3.1: contracts/protocol/pool/PoolCore.sol#L773–L781

Trail of Bits 22 Paraspace Security Assessment
PUBLIC

https://eips.ethereum.org/EIPS/eip-165
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/pool/PoolCore.sol#L773-L781


Exploit Scenario
Alice’s contract tries to send an ERC721 token to a PoolCore contract. Alice’s contract first
tries to determine whether the PoolCore contract supports the ERC721TokenReceiver
interface by calling supportsInterface. When the call reverts, Alice’s contract aborts the
transfer.

Recommendations
Short term, add supportsInterface functions to all contracts that implement a
well-known interface. Doing so will help to ensure that Paraspace contracts can interact
with external contracts.

Long term, add tests to ensure that each contract’s supportsInterface function returns
true for the interfaces that the contract supports and false for some subset of the
interfaces that the contract does not support. Doing so will help to ensure that the
supportsInterface functions work correctly.

References
● EIP-165: Standard Interface Detection

● EIP-721: Non-Fungible Token Standard

Trail of Bits 23 Paraspace Security Assessment
PUBLIC

https://eips.ethereum.org/EIPS/eip-165
https://eips.ethereum.org/EIPS/eip-721


4. ERC1155 asset type is defined but not implemented

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-PARASPACE-4

Target: contracts/protocol/libraries/{logic/PoolLogic.sol,
types/DataTypes.sol}

Description
The asset type ERC1155 is defined in DataTypes.sol but is not otherwise supported.
Having an unsupported variant in the code is risky, as developers could use it accidentally.

The AssetType declaration appears in figure 4.1. It consists of three variants, one of which
is ERC1155. However, ERC1155 does not appear anywhere else in the code. For example, it
does not appear in the executeRescueTokens function in the PoolLogic.sol contract
(figure 4.2), meaning it is not possible to rescue ERC1155 tokens.

enum AssetType {
ERC20,
ERC721,
ERC1155

}

Figure 4.1: contracts/protocol/libraries/types/DataTypes.sol#L7–L11

function executeRescueTokens(
DataTypes.AssetType assetType,
address token,
address to,
uint256 amountOrTokenId

) external {
if (assetType == DataTypes.AssetType.ERC20) {

IERC20(token).safeTransfer(to, amountOrTokenId);
} else if (assetType == DataTypes.AssetType.ERC721) {

IERC721(token).safeTransferFrom(address(this), to, amountOrTokenId);
}

}

Figure 4.2: contracts/protocol/libraries/logic/PoolLogic.sol#L80–L91

Exploit Scenario
Alice, a Paraspace developer, writes code that uses the ERC1155 asset type. Because the
asset type is not implemented, Alice’s code does not work correctly.

Trail of Bits 24 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/types/DataTypes.sol#L7-L11
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/PoolLogic.sol#L80-L91


Recommendations
Short term, remove ERC1155 from AssetType. Doing so will eliminate the possibility that a
developer will use it accidentally.

Long term, if the ERC1155 asset type is re-enabled, thoroughly test all code using it.
Regularly review all conditionals involving asset types (e.g., as in figure 4.2) to verify that
they handle all applicable asset types correctly. Taking these steps will help to ensure that
the code works properly following the incorporation of ERC1155 assets.

Trail of Bits 25 Paraspace Security Assessment
PUBLIC



5. executeMintToTreasury silently skips non-ERC20 tokens

Severity: Low Difficulty: High

Type: Error Reporting Finding ID: TOB-PARASPACE-5

Target: contracts/protocol/{libraries/logic/PoolLogic.sol,
pool/PoolParameters.sol}

Description
The executeMintToTreasury function silently ignores non-ERC20 assets passed to it.
Such behavior could allow erroneous calls to executeMintToTreasury to go unnoticed.

The code for executeMintToTreasury appears in figure 5.1. It is called from the
mintToTreasury function in PoolParameters.sol (figure 5.2). As shown in figure 5.1,
non-ERC20 assets are silently skipped.

function executeMintToTreasury(
mapping(address => DataTypes.ReserveData) storage reservesData,
address[] calldata assets

) external {
for (uint256 i = 0; i < assets.length; i++) {

address assetAddress = assets[i];

DataTypes.ReserveData storage reserve = reservesData[assetAddress];

DataTypes.ReserveConfigurationMap
memory reserveConfiguration = reserve.configuration;

// this cover both inactive reserves and invalid reserves since the flag
will be 0 for both

if (
!reserveConfiguration.getActive() ||
reserveConfiguration.getAssetType() != DataTypes.AssetType.ERC20

) {
continue;

}
...

}
}

Figure 5.1: contracts/protocol/libraries/logic/PoolLogic.sol#L98–L134

function mintToTreasury(address[] calldata assets)
external
virtual

Trail of Bits 26 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/PoolLogic.sol#L98-L134


override
nonReentrant

{
PoolLogic.executeMintToTreasury(_reserves, assets);

}

Figure 5.2: contracts/protocol/pool/PoolParameters.sol#L97–L104

Note that because this is a minting operation, it likely meant to be called by an
administrator. However, an administrator could pass a non-ERC20 asset in error. Because
the function silently skips such assets, the error could go unnoticed.

Exploit Scenario
Alice, a Paraspace administrator, calls mintToTreasury with an array of assets. Alice
accidentally sets one array element to an ERC721 asset. Alice’s mistake is silently ignored by
the on-chain code, and no error is reported.

Recommendations
Short term, have executeMintToTreasury revert when a non-ERC20 asset is passed to it.
Doing so will ensure that callers are alerted to such errors.

Long term, regularly review all conditionals involving asset types to verify that they handle
all applicable asset types correctly. Doing so will help to identify problems involving the
handling of different asset types.

Trail of Bits 27 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/pool/PoolParameters.sol#L97-L104


6. getReservesData does not set all AggregatedReserveData fields

Severity: Low Difficulty: High

Type: Undefined Behavior Finding ID: TOB-PARASPACE-6

Target: contracts/ui/{interfaces/IUiPoolDataProvider.sol,
UiPoolDataProvider.sol}

Description
The getReservesData function fills in an AggregatedReserveData structure for the
reserve handled by an IPoolAddressesProvider. However, the function does not set the
structure’s name and assetType fields. Therefore, off-chain code relying on this function
will see uninitialized data.

Part of the AggregatedReserveData structure appears in figure 6.1. The complete
structure consists of 53 fields. Each iteration of the loop in getReservesData (figure 6.2)
fills in the fields of one AggregatedReserveData structure. However, the loop does not
set the structures’ name fields. And although reserve assetTypes are computed, they are
never stored in the structure.

struct AggregatedReserveData {
address underlyingAsset;
string name;
string symbol;
...
//AssetType
DataTypes.AssetType assetType;

}

Figure 6.1: contracts/ui/interfaces/IUiPoolDataProvider.sol#L18–L78

function getReservesData(IPoolAddressesProvider provider)
public
view
override
returns (AggregatedReserveData[] memory, BaseCurrencyInfo memory)

{
IParaSpaceOracle oracle = IParaSpaceOracle(provider.getPriceOracle());
IPool pool = IPool(provider.getPool());

address[] memory reserves = pool.getReservesList();
AggregatedReserveData[]

memory reservesData = new AggregatedReserveData[](reserves.length);

Trail of Bits 28 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/interfaces/IUiPoolDataProvider.sol#L18-L78


for (uint256 i = 0; i < reserves.length; i++) {
...
DataTypes.AssetType assetType;
(

reserveData.isActive,
reserveData.isFrozen,
reserveData.borrowingEnabled,
reserveData.stableBorrowRateEnabled,
isPaused,
assetType

) = reserveConfigurationMap.getFlags();
...

}
...
return (reservesData, baseCurrencyInfo);

}

Figure 6.2: contracts/ui/UiPoolDataProvider.sol#L83–L269

Exploit Scenario
Alice writes off-chain code that calls getReservesData. Alice’s code treats the returned
name and assetType fields as if they have been properly filled in. Because these fields
have not been set, Alice’s code behaves incorrectly (e.g., by trying to transfer ERC721
tokens as though they were ERC20 tokens).

Recommendations
Short term, adjust getReservesData so that it sets the name and assetType fields. Doing
so will help prevent off-chain code from receiving uninitialized data.

Long term, test code that is meant to be called from off-chain to verify that every returned
field is set. Doing so can help to catch bugs like this one.

Trail of Bits 29 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/UiPoolDataProvider.sol#L83-L269


7. Excessive type repetition in returned tuples

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-PARASPACE-7

Target: contracts/protocol/libraries/{logic/GenericLogic.sol,
configuration/ReserveConfiguration.sol}

Description
Several functions return tuples that contain many fields of the same type adjacent to one
another. Such a practice is error-prone, as callers could easily confuse the fields.

An example appears in figure 7.1. The tuple returned by the calculateUserAccountData
function contains nine fields of type uint256 adjacent to each other. An example in which
the function is called appears in figure 7.2. As the figure makes evident, a misplaced
comma, indicating that the caller identified the wrong field holding the data of interest,
could have disastrous consequences.

/**
* @notice Calculates the user data across the reserves.
* @dev It includes the total liquidity/collateral/borrow balances in the base
currency used by the price feed,
* the average Loan To Value, the average Liquidation Ratio, and the Health factor.
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @param params Additional parameters needed for the calculation
* @return The total collateral of the user in the base currency used by the price
feed
* @return The total ERC721 collateral of the user in the base currency used by the
price feed
* @return The total debt of the user in the base currency used by the price feed
* @return The average ltv of the user
* @return The average liquidation threshold of the user
* @return The health factor of the user
* @return True if the ltv is zero, false otherwise
**/
function calculateUserAccountData(

mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList,
DataTypes.CalculateUserAccountDataParams memory params

)
internal
view
returns (

uint256,

Trail of Bits 30 Paraspace Security Assessment
PUBLIC



uint256,
uint256,
uint256,
uint256,
uint256,
uint256,
uint256,
uint256,
bool

)
{

...
return (

vars.totalCollateralInBaseCurrency,
vars.totalERC721CollateralInBaseCurrency,
vars.totalDebtInBaseCurrency,
vars.avgLtv,
vars.avgLiquidationThreshold,
vars.avgERC721LiquidationThreshold,
vars.payableDebtByERC20Assets,
vars.healthFactor,
vars.erc721HealthFactor,
vars.hasZeroLtvCollateral

);
}

Figure 7.1: contracts/protocol/libraries/logic/GenericLogic.sol#L58–L302

(
vars.userGlobalCollateralBalance,
,
vars.userGlobalTotalDebt,
,
,
,
,
,
vars.healthFactor,

) = GenericLogic.calculateUserAccountData(

Figure 7.2:
contracts/protocol/libraries/logic/LiquidationLogic.sol#L393–L404

Also, note that the documentation of calculateUserAccountData does not accurately
reflect the implementation. The documentation describes only six returned uint256 fields
(highlighted in yellow in figure 7.1). In reality, the function returns an additional three
(highlighted in red in figure 7.1).

Less extreme but similar examples of adjacent field types in tuples appear in figures 7.3
and 7.4.

Trail of Bits 31 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/GenericLogic.sol#L58-L302
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/LiquidationLogic.sol#L393-L404


function getFlags(DataTypes.ReserveConfigurationMap memory self)
internal
pure
returns (

bool,
bool,
bool,
bool,
bool,
DataTypes.AssetType

)

Figure 7.3:
contracts/protocol/libraries/configuration/ReserveConfiguration.sol#L516

–L526

function getParams(DataTypes.ReserveConfigurationMap memory self)
internal
pure
returns (

uint256,
uint256,
uint256,
uint256,
uint256,
bool

)

Figure 7.4:
contracts/protocol/libraries/configuration/ReserveConfiguration.sol#L552

–L562

Exploit Scenario
Alice, a Paraspace developer, writes code that calls calculateUserAccountData. Alice
misplaces a comma, causing the “health factor” to be interpreted as the “ERC721 health
factor.” Alice’s code behaves incorrectly as a result.

Recommendations
Short term, take the following steps:

● Choose a threshold for adjacent fields of the same type in tuples (e.g., four).
Wherever functions return tuples containing a number of adjacent fields of the
same type greater than that threshold, have the functions return structs instead.
Returning a struct instead of a tuple will reduce the likelihood that a caller will
confuse the returned values.

● Correct the documentation in figure 7.1. Doing so will reduce the likelihood that
calculateUserAccountData is miscalled.

Trail of Bits 32 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/configuration/ReserveConfiguration.sol#L516-L526
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/configuration/ReserveConfiguration.sol#L516-L526
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/configuration/ReserveConfiguration.sol#L552-L562
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/configuration/ReserveConfiguration.sol#L552-L562


Long term, as new functions are added to the codebase, ensure that they respect the
threshold chosen in implementing the short-term recommendation. Doing so will help to
ensure that values returned from the new functions are not misinterpreted.

Trail of Bits 33 Paraspace Security Assessment
PUBLIC



8. Incorrect grace period could result in denial of service

Severity: Low Difficulty: High

Type: Denial of Service Finding ID: TOB-PARASPACE-8

Target: contracts/protocol/configuration/PriceOracleSentinel.sol

Description
The PriceOracleSentinel contract’s isBorrowAllowed and isLiquidationAllowed
functions return true only if a “grace period” has elapsed since the oracle’s last update.
Setting the grace period parameter too high could result in a denial-of-service condition.

The relevant code appears in figure 8.1. Both isBorrowAllowed and
isLiquidationAllowed call _isUpAndGracePeriodPassed, which checks whether
block.timestamp minus lastUpdateTimestamp is greater than _gracePeriod.

/// @inheritdoc IPriceOracleSentinel
function isBorrowAllowed() external view override returns (bool) {

return _isUpAndGracePeriodPassed();
}

/// @inheritdoc IPriceOracleSentinel
function isLiquidationAllowed() external view override returns (bool) {

return _isUpAndGracePeriodPassed();
}

/**
* @notice Checks the sequencer oracle is healthy: is up and grace period passed.
* @return True if the SequencerOracle is up and the grace period passed, false
otherwise
*/
function _isUpAndGracePeriodPassed() internal view returns (bool) {

(, int256 answer, , uint256 lastUpdateTimestamp, ) = _sequencerOracle
.latestRoundData();

return
answer == 0 && block.timestamp - lastUpdateTimestamp > _gracePeriod;

}

Figure 8.1: contracts/protocol/configuration/PriceOracleSentinel.sol#L69–L88

Suppose block.timestamp minus lastUpdateTimestamp is never more than N seconds.
Consequently, setting _gracePeriod to N or greater would mean that isBorrowAllowed
and isLiquidationAllowed never return true.

Trail of Bits 34 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/configuration/PriceOracleSentinel.sol#L69-L88


The code in figure 8.1 resembles some example code from the Chainlink documentation.
However, in that example code, the “grace period” is relative to when the round started,
not when the round was updated.

Exploit Scenario
Alice, a Paraspace administrator, accidentally sets the grace period to higher than the
interval at which rounds are updated. Borrowing and liquidation operations are effectively
disabled as a result.

Recommendations
Short term, either have the grace period start from a round’s startedAt time, or consider
removing the grace period entirely. Doing so will eliminate a potential denial-of-service
condition.

Long term, monitor Chainlink oracles’ behavior to determine long-term trends. Doing so
will help in determining safe parameter choices.

Trail of Bits 35 Paraspace Security Assessment
PUBLIC

https://docs.chain.link/docs/data-feeds/l2-sequencer-feeds/#example-code


9. Incorrect accounting in _transferCollaterizable

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-PARASPACE-9

Target: contracts/protocol/tokenization/{NToken.sol,
base/MintableIncentivizedERC721.sol}, test-suites/ntoken.spec.ts

Description
The _transferCollaterizable function mishandles the collaterizedBalance and
_isUsedAsCollateral fields. At a minimum, this means that transferred tokens cannot
be used as collateral.

The code for _transferCollaterizable appears in figure 9.1. It is called from
Ntoken._transfer (figure 9.2). The code decreases
_userState[from].collaterizedBalance and clears
_isUsedAsCollateral[tokenId]. However, the code does not make any corresponding
changes, such as increasing _userState[to].collaterizedBalance and setting
_isUsedAsCollateral[tokenId] elsewhere. As a result, if Alice transfers her NToken to
Bob, Bob will not be able to use the corresponding ERC721 token as collateral.

function _transferCollaterizable(
address from,
address to,
uint256 tokenId

) internal virtual returns (bool isUsedAsCollateral_) {
isUsedAsCollateral_ = _isUsedAsCollateral[tokenId];

if (from != to && isUsedAsCollateral_) {
_userState[from].collaterizedBalance -= 1;
delete _isUsedAsCollateral[tokenId];

}

MintableIncentivizedERC721._transfer(from, to, tokenId);
}

Figure 9.1:
contracts/protocol/tokenization/base/MintableIncentivizedERC721.sol#L643

–L656

function _transfer(
address from,
address to,

Trail of Bits 36 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/tokenization/base/MintableIncentivizedERC721.sol#L643-L656
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/tokenization/base/MintableIncentivizedERC721.sol#L643-L656


uint256 tokenId,
bool validate

) internal {
address underlyingAsset = _underlyingAsset;

uint256 fromBalanceBefore = collaterizedBalanceOf(from);
uint256 toBalanceBefore = collaterizedBalanceOf(to);
bool isUsedAsCollateral = _transferCollaterizable(from, to, tokenId);
...

}

Figure 9.2: contracts/protocol/tokenization/NToken.sol#L300–L324

The code used to verify the bug appears in figure 9.3. The code first verifies that the
collaterizedBalance and _isUsedAsCollateral fields are set correctly. It then has
User 1 send his or her token to User 2, who sends it back to User 1. Finally, it verifies that
the collaterizedBalance and _isUsedAsCollateral fields are set incorrectly. Most
subsequent tests fail thereafter.

it("User 1 sends the nToken to User 2, who sends it back to User 1", async () => {
const {
nBAYC,
users: [user1, user2],

} = testEnv;

expect(await nBAYC.isUsedAsCollateral(0)).to.be.equal(true);
expect(await nBAYC.collaterizedBalanceOf(user1.address)).to.be.equal(1);
expect(await nBAYC.collaterizedBalanceOf(user2.address)).to.be.equal(0);

await nBAYC.connect(user1.signer).transferFrom(user1.address, user2.address, 0);

await nBAYC.connect(user2.signer).transferFrom(user2.address, user1.address, 0);

expect(await nBAYC.isUsedAsCollateral(0)).to.be.equal(false);
expect(await nBAYC.collaterizedBalanceOf(user1.address)).to.be.equal(0);
expect(await nBAYC.collaterizedBalanceOf(user2.address)).to.be.equal(0);

});

it("User 2 deposits 10k DAI and User 1 borrows 8K DAI", async () => {

Figure 9.3: This is the code used to verify the bug. The highlighted line appears in the
ntoken.spec.ts file. What precedes it was added to that file.

Exploit Scenario
Alice, a Paraspace user, maintains several accounts. Alice transfers an NToken from one of
her accounts to another. She tries to borrow against the NToken’s corresponding ERC721
token but is unable to. Alice misses a financial opportunity while trying to determine the
source of the error.

Trail of Bits 37 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/tokenization/NToken.sol#L300-L324


Recommendations
Short term, implement one of the following two options:

● Correct the accounting errors in the code in figure 9.1. (We experimented with this
but were not able to determine all of the necessary changes.) Correcting the
accounting errors will help ensure that users observe predictable behavior
regarding NTokens.

● Disallow the transferring of assets that have been registered as collateral. If a user is
to be surprised by her NToken’s behavior, it is better that it happen sooner (when
the user tries to transfer) than later (when the user tries to borrow).

Long term, expand the tests in ntoken.spec.ts to include scenarios such as transferring
NTokens among users. Including such tests could help to uncover similar bugs.

Note that ntoken.spec.ts includes at least one broken test (figure 9.3). The token ID
passed to nBAYC.transferFrom should be 0, not 1. Furthermore, the test checks for the
wrong error message. It should be Health factor is lesser than the liquidation
threshold, not ERC721: operator query for nonexistent token.

it("User 1 tries to send the nToken to User 2 (should fail)", async () => {
const {
nBAYC,
users: [user1, user2],

} = testEnv;

await expect(
nBAYC.connect(user1.signer).transferFrom(user1.address, user2.address, 1)

).to.be.revertedWith("ERC721: operator query for nonexistent token");
});

Figure 9.4: test-suites/ntoken.spec.ts#L74–L83

Trail of Bits 38 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/test-suites/ntoken.spec.ts#L74-L83


10. IPriceOracle interface is used only in tests

Severity: Informational Difficulty: High

Type: Access Controls Finding ID: TOB-PARASPACE-10

Target: contracts/interfaces/IPriceOracle.sol

Description
The IPriceOracle interface is used only in tests, yet it appears alongside production
code. Its location increases the risk that a developer will try to use it in production code.

The complete interface appears in figure 10.1. Note that the interface includes code that a
real oracle is unlikely to include, such as the setAssetPrice function. Therefore, a
developer that calls this function would likely introduce a bug into the code.

// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.10;

/**
* @title IPriceOracle
*
* @notice Defines the basic interface for a Price oracle.
**/
interface IPriceOracle {

/**
* @notice Returns the asset price in the base currency
* @param asset The address of the asset
* @return The price of the asset
**/
function getAssetPrice(address asset) external view returns (uint256);

/**
* @notice Set the price of the asset
* @param asset The address of the asset
* @param price The price of the asset
**/
function setAssetPrice(address asset, uint256 price) external;

}

Figure 10.1: contracts/interfaces/IPriceOracle.sol

Exploit Scenario
Alice, a Paraspace developer, uses the IPriceOracle interface in production code. Alice’s
contract tries to call the setAssetPrice method. When the vulnerable code path is
exercised, Alice’s contract reverts unexpectedly.

Trail of Bits 39 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/interfaces/IPriceOracle.sol


Recommendations
Short term, move IPriceOracle.sol to a location that makes it clear that it should be
used in testing code only. Adjust all references to the file accordingly. Doing so will reduce
the risk that the file is used in production code.

Long term, as new code is added to the codebase, maintain segregation between
production and testing code. Testing code is typically not held to the same standards as
production code. Calling testing code from production code could introduce bugs.

Trail of Bits 40 Paraspace Security Assessment
PUBLIC



11. Manual ERC721 transfers could be claimed as NTokens by anyone

Severity: High Difficulty: Low

Type: Access Controls Finding ID: TOB-PARASPACE-11

Target: contracts/protocol/tokenization/NToken.sol

Description
The PoolCore contract has an external function supplyERC721FromNToken, whose
purpose is to validate that the given ERC721 assets are owned by the NToken contract and
then to mint the corresponding NTokens to a caller-supplied address. We suspect that the
intended use case for this function is that the NTokenMoonBirds or UniswapV3Gateway
contract will transfer the ERC721 assets to the NToken contract and then immediately call
supplyERC721FromNToken. However, the access controls on this function allow an
unauthorized user to take ownership of any assets manually transferred to the NToken
contract, for whatever reason that may be, as NToken does not track the original owner of
the asset.

function supplyERC721FromNToken(
address asset,
DataTypes.ERC721SupplyParams[] calldata tokenData,
address onBehalfOf

) external virtual override nonReentrant {
SupplyLogic.executeSupplyERC721FromNToken(

// ...
);

}

Figure 11.1: The external supplyERC721FromNToken function within PoolCore

function validateSupplyFromNToken(
DataTypes.ReserveCache memory reserveCache,
DataTypes.ExecuteSupplyERC721Params memory params,
DataTypes.AssetType assetType

) internal view {
// ...
for (uint256 index = 0; index < amount; index++) {

// validate that the owner of the underlying asset is the NToken  contract
require(

IERC721(params.asset).ownerOf(
params.tokenData[index].tokenId

) == reserveCache.xTokenAddress,
Errors.NOT_THE_OWNER

);

Trail of Bits 41 Paraspace Security Assessment
PUBLIC



// validate that the owner of the ntoken that has the same tokenId is the
zero address

require(
IERC721(reserveCache.xTokenAddress).ownerOf(

params.tokenData[index].tokenId
) == address(0x0),
Errors.NOT_THE_OWNER

);
}

}

Figure 11.2: The validation checks performed by supplyERC721FromNToken

function executeSupplyERC721Base(
uint16 reserveId,
address nTokenAddress,
DataTypes.UserConfigurationMap storage userConfig,
DataTypes.ExecuteSupplyERC721Params memory params

) internal {
// ...
bool isFirstCollaterarized = INToken(nTokenAddress).mint(

params.onBehalfOf,
params.tokenData

);
// ...

}

Figure 11.3: The unauthorized minting operation

Users regularly interact with the NToken contract, which represents ERC721 assets, so it is
possible that a malicious actor could convince users to transfer their ERC721 assets to the
contract in an unintended manner.

Exploit Scenario
Alice, an unaware owner of some ERC721 assets, is convinced to transfer her assets to the
NToken contract (or transfers them on her own accord, unaware that she should not). A
malicious third party mints NTokens from Alice’s assets and withdraws them to his own
account.

Recommendations
Short term, document the purpose and use of the NToken contract to ensure that users
are unambiguously aware that ERC721 tokens are not meant to be sent directly to the
NToken contract.

Long term, consider whether supplyERC721FromNToken should have more access
controls around it. Additional access controls could prevent attackers from taking
ownership of any incorrectly transferred asset. In particular, this function is called from
only two locations, so a msg.sender whitelist could be sufficient. Additionally, if possible,
consider adding additional metadata to the contract to track the original owner of ERC721

Trail of Bits 42 Paraspace Security Assessment
PUBLIC



assets, and consider providing a mechanism for transferring any asset without a
corresponding NToken back to the original owner.

Trail of Bits 43 Paraspace Security Assessment
PUBLIC



12. Inconsistent behavior between NToken and PToken liquidations

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-PARASPACE-12

Target: contracts/protocol/libraries/logic/LiquidationLogic.sol

Description
When a user liquidates another user’s ERC20 tokens and opts to receive PTokens, the
PTokens are automatically registered as collateral. However, when a user liquidates
another user’s ERC721 token and opts to receive an NToken, the NToken is not
automatically registered as collateral. This discrepancy could be confusing for users.

The relevant code appears in figures 12.1 through 12.3. For ERC20 tokens,
_liquidatePTokens is called, which in turns calls setUsingAsCollateral if the
liquidator has not already designated the PTokens as collateral (figures 12.1 and 12.2).
However, for an ERC721 token, the NToken is simply transferred (figure 12.3).

if (params.receiveXToken) {
_liquidatePTokens(usersConfig, collateralReserve, params, vars);

} else {

Figure 12.1:
contracts/protocol/libraries/logic/LiquidationLogic.sol#L310–L312

function _liquidatePTokens(
mapping(address => DataTypes.UserConfigurationMap) storage usersConfig,
DataTypes.ReserveData storage collateralReserve,
DataTypes.ExecuteLiquidationCallParams memory params,
LiquidationCallLocalVars memory vars

) internal {
...
if (liquidatorPreviousPTokenBalance == 0) {

DataTypes.UserConfigurationMap
storage liquidatorConfig = usersConfig[vars.liquidator];

liquidatorConfig.setUsingAsCollateral(collateralReserve.id, true);
emit ReserveUsedAsCollateralEnabled(

params.collateralAsset,
vars.liquidator

);
}

}

Trail of Bits 44 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/LiquidationLogic.sol#L310-L312


Figure 12.2:
contracts/protocol/libraries/logic/LiquidationLogic.sol#L667–L693

if (params.receiveXToken) {
INToken(vars.collateralXToken).transferOnLiquidation(

params.user,
vars.liquidator,
params.collateralTokenId

);
} else {

Figure 12.3:
contracts/protocol/libraries/logic/LiquidationLogic.sol#L562–L568

Exploit Scenario
Alice, a Paraspace user, liquidates several ERC721 tokens. Alice comes to expect that
received NTokens are not designated as collateral. Eventually, Alice liquidates another
user’s ERC20 tokens and opts to receive PTokens. Bob liquidates Alice’s PTokens, and Alice
loses the underlying ERC20 tokens as a result.

Recommendations
Short term, conspicuously document the fact that PToken and NToken liquidations behave
differently. Doing so will reduce the likelihood that users will be surprised by the
inconsistency.

Long term, consider whether the behavior should be made consistent. That is, decide
whether NTokens and PTokens should be automatically collateralized on liquidation, and
implement such behavior for both types of tokens. A consistent API is less likely to be a
source of errors.

Trail of Bits 45 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/LiquidationLogic.sol#L667-L693
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/LiquidationLogic.sol#L562-L568


13. Missing asset type checks in ValidationLogic library

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-PARASPACE-13

Target: contracts/protocol/libraries/logic/ValidationLogic.sol

Description
Some validation functions involving assets do not check the given asset’s type. Such checks
should be added to ensure defense in depth.

The validateRepay function is one example (figure 13.1). The function performs several
checks involving the asset being repaid, but the function does not check that the asset is an
ERC20 asset.

function validateRepay(
DataTypes.ReserveCache memory reserveCache,
uint256 amountSent,
DataTypes.InterestRateMode interestRateMode,
address onBehalfOf,
uint256 stableDebt,
uint256 variableDebt

) internal view {
...
(bool isActive, , , , bool isPaused, ) = reserveCache

.reserveConfiguration

.getFlags();
require(isActive, Errors.RESERVE_INACTIVE);
require(!isPaused, Errors.RESERVE_PAUSED);
...

}

Figure 13.1:
contracts/protocol/libraries/logic/ValidationLogic.sol#L403–L447

Another example is the validateFlashloanSimple function, which does not check that
the loaned asset is an ERC20 asset.

We do not believe that the absence of these checks currently represents a vulnerability.
However, adding these checks will help protect the code against future modifications.

Exploit Scenario
Alice, a Paraspace developer, implements a feature allowing users to flash loan ERC721
tokens to other users in exchange for a fee. Alice uses the validateFlashloanSimple

Trail of Bits 46 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/ValidationLogic.sol#L403-L447


function as a template for implementing the new validation code. Therefore, Alice’s
additions lack a check that the loaned assets are actually ERC721 assets. Some users lose
ERC20 tokens as a result.

Recommendations
Short term, ensure that each validation function involving assets verifies the type of the
asset involved. Doing so will help protect the code against future modifications.

Long term, regularly review all conditionals involving asset types to verify that they handle
all applicable asset types correctly. Doing so will help to identify problems involving the
handling of different asset types.

Trail of Bits 47 Paraspace Security Assessment
PUBLIC



14. Uniswap v3 NFT flash claims may lead to undercollateralization

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-PARASPACE-14

Target: contracts/protocol/libraries/logic/FlashClaimLogic.sol

Description
Flash claims enable users with collateralized NFTs to assume ownership of the underlying
asset for the duration of a single transaction, with the condition that the NFT be returned at
the end of the transaction. When used with typical NFTs, such as Bored Ape Yacht Club
tokens, the atomic nature of flash claims prevents users from removing net value from the
Paraspace contract while enabling them to claim rewards, such as airdrops, that they are
entitled to by virtue of owning the NFTs.

Uniswap v3 NFTs represent a position in a Uniswap liquidity pool and entitle the owner to
add or withdraw liquidity from the underlying Uniswap position. Uniswap v3 NFT prices are
determined by summing the value of the two ERC20 tokens deposited as liquidity in the
underlying position. Normally, when a Uniswap NFT is deposited in the Uniswap NToken
contract, the user can withdraw liquidity only if the resulting price leaves the user’s health
factor above one. However, by leveraging the flash claim system, a user could claim the
Uniswap v3 NFT temporarily and withdraw liquidity directly, returning a valueless NFT.

As currently implemented, Paraspace is not vulnerable to this attack because Uniswap v3
flash claims are, apparently accidentally, nonfunctional. A check in the onERC721Recieved
function of the NTokenUniswapV3 contract, which is designed to prevent users from
depositing Uniswap positions via the supplyERC721 method, incidentally prevents
Uniswap NFTs from being returned to the contract during the flash claim process. However,
this check could be removed in future updates and occurs at the very last step in what
would otherwise be a successful exploit.

function onERC721Received(
address operator,
address,
uint256 id,
bytes memory

) external virtual override returns (bytes4) {

// ...

// if the operator is the pool, this means that the pool is transferring the
token to this contract

Trail of Bits 48 Paraspace Security Assessment
PUBLIC



// which can happen during a normal supplyERC721 pool tx
if (operator == address(POOL)) {

revert(Errors.OPERATION_NOT_SUPPORTED);
}

Figure 14.1: The failing check that prevents the completion of Uniswap v3 flash claims

Exploit Scenario
Alice, a Paraspace developer, decides to move the check that prevents users from
depositing Uniswap v3 NFTs via the supplyERC721 method out of the onERC721Received
function and into the Paraspace Pool contract. She thus unwittingly enables flash claims
for Uniswap v3 positions. Bob, a malicious actor, then deposits a Uniswap NFT worth 100
ETH and borrows 30 ETH against it. Bob flash claims the NFT and withdraws the 100 ETH of
liquidity, leaving a worthless NFT as collateral and taking the 30 ETH as profit.

Recommendations
Short term, disable Uniswap v3 NFT flash claims explicitly by requiring in
ValidationLogic.validateFlashClaim that the flash claimed NFT not be atomically
priced.

Long term, consider adding a user healthFactor check after the return phase of the flash
claim process to ensure that users cannot become undercollateralized as a result of flash
claims.

Trail of Bits 49 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/tokenization/NTokenUniswapV3.sol#L38-L51


15. Non-injective hash encoding in getClaimKeyHash

Severity: Informational Difficulty: High

Type: Cryptography Finding ID: TOB-PARASPACE-15

Target: contracts/misc/flashclaim/AirdropFlashClaimReceiver.sol

Description
As part of the flash claim functionality, Paraspace provides an implementation of a contract
that can claim airdrops on behalf of NFT holders. This contract tracks claimed airdrops in
the airdropClaimRecords mapping, indexed by the result of the getClaimKeyHash
function. However, it is possible for two different inputs to getClaimKeyHash to result in
identical hashes through a collision in the unpacked encoding. Because nftTokenIds and
params are both variable-length inputs, an input with nftTokenIds equal to uint256(1)
and an empty params will hash to the same value as an input with an empty nftTokenIds
and params equal to uint256(1).

Although the airdropClaimRecords mapping is not read or otherwise referenced
elsewhere in the code, collisions may cause off-chain clients to mistakenly believe that an
unclaimed airdrop has already been claimed.

function getClaimKeyHash(
address initiator,
address nftAsset,
uint256[] calldata nftTokenIds,
bytes calldata params

) public pure returns (bytes32) {
return

keccak256(
abi.encodePacked(initiator, nftAsset, nftTokenIds, params)

);
}

Figure 15.1:
contracts/misc/flashclaim/AirdropFlashClaimReceiver.sol#L247–257

Exploit Scenario
Paraspace develops an off-chain tool to help users automatically claim airdrops for their
NFTs. By chance or through malfeasance, two different airdrop claim operations for the
same nftAsset result in the same claimKeyHash. The tool then mistakenly believes that
it has claimed both airdrops when, in reality, it claimed only one.

Trail of Bits 50 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/misc/flashclaim/AirdropFlashClaimReceiver.sol#L247-L257


Recommendations
Short term, encode the input to keccak256 using abi.encode in order to preserve
boundaries between inputs.

Long term, consider using an EIP-712 compatible structured hash encoding with domain
separation wherever hashes will be used as unique identifiers or signed messages.

Trail of Bits 51 Paraspace Security Assessment
PUBLIC

https://eips.ethereum.org/EIPS/eip-712


Summary of Recommendations

The Paraspace decentralized lending protocol is a work in progress with multiple planned
iterations. Trail of Bits recommends that Paraspace address the findings detailed in this
report and take the following additional steps prior to deployment:

● Adopt a testing arrangement that does not require all tests to be initialized before
any one test can be run (TOB-PARASPACE-1).

● Add operation-specific events to all critical operations (TOB-PARASPACE-2).

● Ensure that all asset types are fully implemented and tested before deploying code
that uses them (TOB-PARASPACE-4, TOB-PARASPACE-5).

● Further investigate the use of price oracles to ensure their correct integration into
the protocol (TOB-PARASPACE-8).

● Implement proper access controls on the supplyERC721FromNToken function and
Uniswap v3 NFTs to prevent the accidental loss of user funds (TOB-PARASPACE-11,
TOB-PARASPACE-14).

● Expand the project documentation to include descriptions of the project’s internals
and the way its components interact.

Trail of Bits 52 Paraspace Security Assessment
PUBLIC



A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 53 Paraspace Security Assessment
PUBLIC



Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 54 Paraspace Security Assessment
PUBLIC



B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Front-Running
Resistance

The system’s resistance to front-running attacks

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Trail of Bits 55 Paraspace Security Assessment
PUBLIC



Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 56 Paraspace Security Assessment
PUBLIC



C. Non-Security-Related Findings

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

● The following comment describing the purposes of the bits in
ReserveConfigurationMap.data is incorrect:

struct ReserveConfigurationMap {
...
//bit 152-167 liquidation protocol fee
//bit 168-175 eMode category
//bit 176-211 unbacked mint cap in whole tokens, unbackedMintCap == 0 =>

minting disabled
//bit 212-251 debt ceiling for isolation mode with

(ReserveConfiguration::DEBT_CEILING_DECIMALS) decimals
//bit 252-255 unused

uint256 data;
}

As can be seen from the following definitions, the four bits starting at position 168
hold the asset type:

uint256 internal constant ASSET_TYPE_START_BIT_POSITION = 168;
uint256 internal constant IS_DYNAMIC_CONFIGS_START_BIT_POSITION = 172;

● The following fields in AggregatedReserveData are unused; consider removing
them:

struct AggregatedReserveData {
...
// eMode
uint16 eModeLtv;
uint16 eModeLiquidationThreshold;
uint16 eModeLiquidationBonus;
address eModePriceSource;
string eModeLabel;
bool borrowableInIsolation;
...

}

● The following comment in LiquidationLogic.sol is incorrect:

* @notice Function to liquidate an ERC721 of a position if its Health Factor
drops below 1. The caller (liquidator)
* covers `liquidationAmount` amount of debt of the user getting liquidated, and
receives

Trail of Bits 57 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/types/DataTypes.sol#L62-L65
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/configuration/ReserveConfiguration.sol#L48-L49
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/interfaces/IUiPoolDataProvider.sol#L69-L75
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/LiquidationLogic.sol#L359-L361


* a proportional tokenId of the `collateralAsset` minus a bonus to cover market
risk

The comment should say something like the following:

* @notice Function to liquidate an ERC721 of a position if its Health Factor
drops below 1. The caller (liquidator)
* covers `liquidationAmount` amount of debt of the user getting liquidated
minus a bonus to cover market risk, and
* receives the tokenId of the `collateralAsset`

● It appears that IncentivesController in the Aave codebase was renamed to
RewardController in the Paraspace codebase. However, the renaming appears to
be incomplete, as shown in the following example:

/**
* @notice Returns the address of the Incentives Controller contract
* @return The address of the Incentives Controller
**/
function getIncentivesController()

external
view
virtual
returns (IRewardController)

{
return _rewardController;

}

Also, note that both RewardController (singular) and RewardsController
(plural) are used in the codebase (though the former seems to be used more).

● The functions executeSwapBorrowRateMode and
executeRebalanceStableBorrowRate are unused and could be removed:

function executeSwapBorrowRateMode(
DataTypes.ReserveData storage reserve,
DataTypes.UserConfigurationMap storage userConfig,
address asset,
DataTypes.InterestRateMode interestRateMode

) external {

function executeRebalanceStableBorrowRate(
DataTypes.ReserveData storage reserve,
address asset,
address user

) external {

● The following comment in MoonBirdsGateway.sol is incorrect (Punk should be
Moonbird):

Trail of Bits 58 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/tokenization/base/IncentivizedERC20.sol#L121-L132
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/BorrowLogic.sol#L315-L320
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/BorrowLogic.sol#L270-L274
https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/ui/MoonBirdsGateway.sol#L35


* @dev supplies (deposits) WPunk into the reserve, using native Punk. A
corresponding amount of the overlying asset (xTokens)
* is minted.

● PTokens allow self-liquidation, but NTokens do not:

require(
params.liquidator != params.borrower,
Errors.LIQUIDATOR_CAN_NOT_BE_SELF

);

We could find no vulnerabilities associated with allowing self-liquidation.
Nonetheless, Paraspace should consider disabling self-liquidation for PTokens for
consistency.

● NTokenMoonBirds and NTokenUniswapV3 share the same comment in the
onERC721Received function when the operator is the pool, but the former
succeeds and the latter reverts.

// if the operator is the pool, this means that the pool is transferring the
token to this contract
// which can happen during a normal supplyERC721 pool tx

This comment should be adjusted in both cases to more accurately describe why
one succeeds and the other reverts.

Trail of Bits 59 Paraspace Security Assessment
PUBLIC

https://github.com/para-space/paraspace-core/blob/4d981e53a06c7188547eecbe1acd8867753c00b0/contracts/protocol/libraries/logic/ValidationLogic.sol#L702-L705

