
THE DEVELOPER’S GUIDE:

Jennifer Reif
John Stegeman
Damaso Sanoja

How to Build a
Knowledge Graph

EBOOK

The Developer’s Guide: How to Build a Knowledge Graph

Table of Contents

The Developer’s Guide: How to Build a Knowledge Graph.......................................

What Is a Knowledge Graph?...

	 Components of a Knowledge Graph...

Build and Query Your Knowledge Graph...

	 Sign Up for a Neo4j Account..

	 Create a Graph Database Instance..

	 Create a Graph Data Model..

	 Load Data Into Your Knowledge Graph..

		 Load Structured Data...

	 Query Your Knowledge Graph...

		 MATCH Clause..

		 CREATE and MERGE Clauses..

Next Steps..

	 Expand Your Knowledge Graph With Unstructured Data...........................

	 Load Unstructured Data..

	 Enrich Your Knowledge Graph Using Graph Algorithms.............................

Use Cases and Design Patterns...

	 Supply Chain..

	 Entity Resolution...

	 GenAI...

Concluding Thoughts and Further Learning...

3

3

4

5

5

5

6

11

11

13

14

16

16

17

17

18

18

18

18

19

20

The Developer’s Guide: How to Build a Knowledge Graph

3

What Is a Knowledge Graph?

A knowledge graph maps entities — objects, events,
or concepts — and their relationships into an
interconnected structure. This relationship-centric
approach models real-world scenarios with precision
while embedding domain-specific knowledge and
business rules as organizing principles.

Used to integrate different types of information, a
knowledge graph works well for use cases that pull
data from multiple sources, including structured
(traditional database entries) and unstructured
(documents, social media posts) data. This unified
view of a company’s knowledge is highly valuable,
especially compared to traditional data design where
information is fragmented, and relationships must be
reconstructed through JOIN queries.

For example, a knowledge graph might represent
patients, symptoms, diseases, etc., as depicted in
the diagram below. A patient might have symptoms
similar to patients with overlapping symptoms,
diseases, or side effects. Prescriptions could also be
linked to the pharmaceutical companies that make
them or the doctors who often prescribe them for
several different illnesses.

Figure 1. Knowledge graph example

Knowledge graphs surface hidden patterns through
connections in data. For instance, a medication
manufacturer depends on a supplier network for
product components. A knowledge graph could
reveal that several key suppliers are located in
a hurricane-prone region — a risk that might go
unnoticed in a traditional database.

The Developer’s Guide: How
to Build a Knowledge Graph

Our minds make sense of data by connecting
different pieces of information to form a cohesive
picture. Traditional database systems like MySQL
and PostgreSQL store data in rigid boxes that don’t
connect easily. This causes headaches for companies
and the developers working with these systems.
Examples include:

•	 Information silos block natural collaboration
between teams.

•	 Complex join operations and foreign keys lead
to poor runtime performance.

•	 Fixed schemas resist adaptation as business
needs change.

The biggest problem with traditional database
systems is that the intricate context around the data

— how everything fits together — often gets lost.
It’s like trying to understand a complex codebase
without any documentation or understanding of the
relationships between different modules. Over time,
traditional databases become increasingly difficult
to maintain and modify, which steadily erodes their
business value.

A knowledge graph solves these problems. Rather
than holding data static in rows and columns, a
knowledge graph organizes information in its natural
form: a web of interconnected entities. A flexible
schema makes it simple to add new entities and
relationships as they emerge. Patterns that get
lost easily in a traditional database, such as similar
purchasing behaviors or fraudulent transactions, are
clearly visible in a knowledge graph.

This guide walks you through everything you need
to know to build your first knowledge graph. You’ll
learn core concepts and how to think about modeling
data with relationships. Then, you’ll set up your
own knowledge graph and start querying it to
answer questions that you can’t answer in a

“traditional database.”

The Developer’s Guide: How to Build a Knowledge Graph

4

Components of a Knowledge Graph
There are three major components of any knowledge
graph: nodes, relationships, and organizing principles.

Nodes represent instances of specific entities, such
as tangible objects (people, places, things), abstract
concepts, or events. Nodes are the fundamental
building blocks of a knowledge graph. You can have
as many nodes as needed in a graph.

In the healthcare example, nodes represent individual
patients and diseases:

Figure 2. Healthcare example — nodes

Labels identify nodes by role or type, serving as a
classifier or tag that defines their function or purpose
in your domain. They add semantic meaning to nodes,
making the graph more intuitive to understand and
query. When you specify a label in your query, it
helps the graph database find the type of node you’re
looking for.

Two labels from the healthcare example would be
“Patient” and “Disease”:

Figure 3. Healthcare example — labels

Relationships, also known as connections, contain
information about how nodes interact with or relate
to one another. They add context and meaning to the
data — a patient linked to a health condition with
a “DIAGNOSED_WITH” relationship or connected to
a prescription to show what medications they are

“TAKING,” for instance:

Figure 4. Healthcare example — relationships

Properties are attributes that provide information
about nodes and relationships. They enrich the graph
with detailed metadata and domain context.

In the healthcare example, the “Patient” node could
have properties like name, date of birth, and contact
information, while the “Disease” node could include
properties like name and description:

Figure 5. Healthcare example — properties

Organizing principles bring business context to the
graph by defining how entities, relationships, and
properties are structured and used. They specify
the types of nodes and relationships, establish
hierarchies or categories, and guide interactions
within the graph. This structure makes the data

https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/#graphdb-node
https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/#graphdb-labels
https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/#graphdb-relationship
https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/#graphdb-properties

The Developer’s Guide: How to Build a Knowledge Graph

5

easier to understand and enables more efficient
querying, analysis, and inference across different
levels of detail.

In the healthcare knowledge graph, diseases could
be organized into categories (such as cardiovascular
or respiratory diseases), while patients could be
grouped by risk factors or age ranges. This structure
enables analysis at various levels, from individual
patient-disease relationships to broader population
health trends.

Figure 6. Healthcare example — organizing principles

Build and Query Your
Knowledge Graph

Now that you know the fundamentals, you can create
your first knowledge graph using a Neo4j graph
database. Though you could create a knowledge
graph in another type of database, a property graph
database like Neo4j is purpose-built for this task. A
property graph database aligns naturally with the
structure of a knowledge graph, making it the most
intuitive option for implementation.

This guide teaches you to build a knowledge graph
from start to finish. The example is retail transaction
data with products, product categories, customers,
and orders. You’ll learn how to design a knowledge
graph, populate it with data, and query it using
Cypher. As you move through this process, you’ll see
how a knowledge graph allows you to answer multi-
step questions — sometimes even answering two
questions with a single streamlined query.

Once you feel confident querying your knowledge
graph, you’ll have a chance to experiment with

another layer: unstructured data. This is where the
magic starts to happen in a knowledge graph: the
ability to add new and different types of data and
then query relationships across all the data.

Sign Up for a Neo4j Account
You’ll build your knowledge graph on the cloud-
hosted, fully managed Neo4j AuraDB Graph
Database. Neo4j stores data as nodes and
relationships, supports the Cypher graph query
language, and offers tools for data visualization, data
science, and data connectors. Before using AuraDB,
you’ll need an account.

If you already have a Neo4j account, you can log
into the Aura Console and skip to the next step to
create a database instance.

Follow these steps to create a Neo4j Aura account:

1. Navigate to the Neo4j Aura Console.

2. Click on Sign up below the login box.

Figure 7. Neo4j Aura signup screen

3. Type your email address into the input box and
click Continue to set up the password and other
necessary information. Alternatively, you can sign in
using the Google or organization account option.

4. If prompted, agree to the Neo4j terms.

Next, you’ll create a graph database instance to hold
your knowledge graph.

Create a Graph Database Instance
In this step, you’ll create the actual database
instance to store your knowledge graph. If you

https://neo4j.com/blog/rdf-vs-property-graphs-knowledge-graphs/
https://neo4j.com/blog/rdf-vs-property-graphs-knowledge-graphs/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/product/auradb/
https://neo4j.com/product/auradb/
https://console.neo4j.io
https://console.neo4j.io

The Developer’s Guide: How to Build a Knowledge Graph

6

haven’t already, navigate to the Aura Console and
log in. Then:

1. Click the Create instance button:

Figure 8. Neo4j Aura Create instance screen

2. You’ll see a list of instance types, with the
Professional tier (center option) highlighted by
default. AuraDB Free is a great way to start learning
and exploring knowledge graphs. When you’re ready
to move to production-quality, high-performance
applications in the cloud, you can progress to AuraDB
Professional. We’ll use the Free instance for our
knowledge graph, so click the Select button at the
bottom of the Free tier.

Figure 9. New AuraDB Free instance screen

3. A pop-up should appear with the credentials for
your instance. Click Download and Continue to
download the credentials file. (Important: You cannot
access the password after this point.) Your database
instance will take a few minutes to create. Once
complete, you can move to the next section, where
you’ll design a graph data model for importing data.

Create a Graph Data Model
Now that you have a database instance ready, you
need to populate it with data. The Data Importer tool
will help you design the structure of your knowledge
graph by drawing entities and relationships to
represent your domain of interest.

From the main Aura console, click the Import option
in the left menu:

Figure 10. Data import screen

Click New data source in the middle:

Figure 11. Selecting New data source screen

Then choose the .CSV* option.
(lower part of the pop-up):

Figure 12. Aura New data source screen

Data Importer may not automatically connect to your
running instance, so in the upper left, if it says “No
instance connected,” follow these steps:

https://console.neo4j.io
https://neo4j.com/docs/data-importer/current/

The Developer’s Guide: How to Build a Knowledge Graph

7

1. Click on the drop-down next to No instance
connected and click Connect to instance:

Figure 13. Aura No instance connected screen

2. Click Connect next to your instance:

Figure 14. Aura Connect to instance screen

3. In the credentials pop-up, type in the username
and password for your instance. The downloaded
credential file from earlier is helpful here.
Click Connect.

You should be on the main Data Importer screen and
see your connected instance in the upper left:

Figure 15. Aura Data Importer connected instance screen

You’ll create a simplified version of the Northwind
Graph example, an ecommerce demonstration
based on the popular Northwind sample dataset.
The dataset is formatted as CSV files containing
information about customers, orders, products,
categories, and suppliers. Let’s create the model
below in Data Importer:

Figure 16. Northwind graph data model

To start designing the model, click Add node label:

Figure 17. Initial add node label screen

https://github.com/neo4j-graph-examples/northwind
https://github.com/neo4j-graph-examples/northwind

The Developer’s Guide: How to Build a Knowledge Graph

8

Note: To minimize the Data source tab along the left
side, click the Data sources icon in the upper left of
the visualization pane:

Figure 18. Data sources icon screen

A circle should appear in the pane, along with a right
tab containing definition metadata:

Figure 19. Definition screen

This will be the Customer node in the data model.
Customer nodes will have three properties:
customerID (string), companyName (string), and
city (string). Follow these steps to define the node:

1. Type Customer as the label in the Name field. This
label will identify the type of entity these nodes
represent in the graph.

2. Click the + sign next to Properties to add
node properties.

3. Edit the property by clicking the Property1 button
under Properties, type customerID, and press
Enter. To the right of the property name, select the
appropriate data type from the drop-down (in this
case, string).

Repeat this process for companyName and city. Your
completed Customer node should look like this:

Figure 20. Customer node screen

Next, create another node type for Orders. Click
the Add node label icon in the top-left corner of the
sketch area:

Figure 21. Add node label screen

The Developer’s Guide: How to Build a Knowledge Graph

9

A new blank node will appear in your workspace.
Label this new node type as “Order” and add the
following properties: orderID (integer), orderDate
(datetime), and shippedDate (datetime):

Figure 22. Order node label screen

Next, you’ll create a relationship between the
“Customer” and “Order” node types to represent that
a customer places an order. Click the Customer node
to select it. Hover your mouse over the border of
the node to see a green + button. Click and hold the
mouse button, then drag the gray circle that appears
to the “Order” node:

Figure 23. Create the relationship between “Customer” and

“Order” screen

Figure 23 (cont). Create the relationship between “Customer” and

“Order” screen

Release the button only when you’re over the “Order”
node to create a new relationship (or else you’ll
create a new blank node).

Notice that the relationship has a direction from
“Customer” to “Order.” By drawing a line between
the “Customer” and “Order” nodes, you’re modeling
a customer’s purchase in the knowledge graph. The
relationship explicitly defines how customers relate
to orders.

Relationships need to have a type. In the
relationship’s metadata pane on the right, name this
relationship type “PURCHASED.”

This intuitive representation of data and relationships
enables powerful querying capabilities because
the model clearly defines not only that there is
a relationship but also how the entities relate to
one another. A purchase relationship would help
us understand customer order history and habits,
but a Customer-CREATES > Order could point to a
shopping cart that hasn’t been purchased yet. We’ll
discuss more ways to answer business questions
with graph data later in this guide.

This intuitive representation is how we tend to model
and think of data, even for other types of databases.
The difference with a knowledge graph is that what
you draw is exactly what you’re going to store and
query in the database. With other database types,
you’d have to take this intuitive model and figure out

The Developer’s Guide: How to Build a Knowledge Graph

10

how to implement it within the technical limitations
of that database (the transition the conceptual data
model from the physical data model). In a knowledge
graph, the conceptual data model and physical data
model are one and the same.

To finish the Northwind graph model, create a third
node type called “Product” and add three properties
to it: productID (integer), productName (string), and
unitPrice (float):

Figure 25. Create “Product” node screen

Next, create a new relationship type by drawing a line
from the “Order” node to the “Product” node. Name
this new relationship type “ORDERS”:

Figure 26. Create a new relationship type by drawing a line from

“Order” node to “Product” node screen

Remember that relationships can have properties,
too. Add the property quantity (integer) to store the
number of that product ordered.

To add suppliers to our model, create a fourth node
type called “Supplier” and add three properties to
it: supplierID (integer), companyName (string), and
city (string). Create a relationship from “Supplier” to

“Product” and name it “SUPPLIES”:

Figure 27. Create “Supplier” node type screen

Your knowledge graph model now has four node
types and three relationship types, but it still lacks
an organizing principle. In the Northwind example,
your organizing principle could be a product
hierarchy that streamlines product group searches.
As another option, you could choose a process-based
principle around the order fulfillment stages to
optimize the supply chain and delivery network.

For this example, you’ll add a product hierarchy as
the organizing principle of your graph.

The Developer’s Guide: How to Build a Knowledge Graph

11

Start by adding another node type in the data model.
Name it “Category” and include the properties
categoryID (integer) and categoryName (string):

Figure 28. Create “Category” node type screen

Next, create a new relationship type starting from
the “Product” node and going to the “Category” node
named “PART_OF”:

Figure 29. Create “PART_OF” relationship type screen

Now that your knowledge graph model has relevant
relationships and an organizing principle, you’re ready
to bring it to life with data.

Load Data Into Your Knowledge Graph
Loading data into your knowledge graph creates
nodes and relationships about specific customers,
orders, products, and categories with the model you
defined.

For this example, you’ll import CSV data from the
Northwind database.

Load Structured Data

Download the following CSV files from the Northwind
GitHub repository:

•	 categories.csv
•	 customers.csv
•	 order-details.csv
•	 orders.csv
•	 products.csv
•	 suppliers.csv

In the Aura workspace, click the Data sources icon in
the top-left corner of the sketch area to expand the
Files menu.

Figure 30. Data sources screen

Choose the bottom of the two options (Drag & Drop
and browse support CSV) for loading data into
your knowledge graph and add the files you just
downloaded.

Figure 31. Drag & Drop and browse support CSV selection screen

https://github.com/neo4j-graph-examples/northwind
https://github.com/neo4j-graph-examples/northwind/tree/main/import
https://github.com/neo4j-graph-examples/northwind/tree/main/import
https://raw.githubusercontent.com/neo4j-graph-examples/northwind/refs/heads/main/import/categories.csv
https://raw.githubusercontent.com/neo4j-graph-examples/northwind/refs/heads/main/import/customers.csv
https://raw.githubusercontent.com/neo4j-graph-examples/northwind/refs/heads/main/import/order-details.csv
https://raw.githubusercontent.com/neo4j-graph-examples/northwind/refs/heads/main/import/orders.csv
https://raw.githubusercontent.com/neo4j-graph-examples/northwind/refs/heads/main/import/products.csv
https://raw.githubusercontent.com/neo4j-graph-examples/northwind/refs/heads/main/import/suppliers.csv

The Developer’s Guide: How to Build a Knowledge Graph

12

Here’s what you should see after uploading the files
(properties collapsed):

Figure 32. File upload screen

After adding your data files, close the Data source
menu by clicking the icon again.

Map the data from the files to the nodes and
relationships in your graph model by clicking any
node or relationship in the drawing and locating the
Table > Name field in the Definition tab. Open the
drop-down list and select the appropriate file:

•	 For the “Customer” node, select customers.csv
•	 For the “Order” node, choose orders.csv
•	 For the “Product” node, pick products.csv
•	 For the “Supplier” node, select suppliers.csv
•	 For the “Category” node, use categories.csv
•	 For the “PURCHASED” relationship, select
orders.csv

•	 For the “ORDERS” relationship, pick order-
details.csv

•	 For the “SUPPLIES” relationship, pick
products.csv

•	 For the “PART_OF” relationship, choose
products.csv

Next, scroll down to the Properties section. It shows
a list of the properties you defined earlier in your
graph model. Since you used the same naming
convention as the GitHub repository, the property
names in your graph model will match the field
names in the CSV files, which simplifies the mapping
process. Though you can map each property from
your model to the CSV field manually using the drop-
downs, a simpler option is to click Map from table
just above the properties, choose which columns
from the CSV files to map, and click Confirm:

Figure 33. Map from table screen

To map relationships, you’ll notice an additional
section, Node ID mapping, with fields to map From
and To nodes:

Figure 34. Node ID mapping screen

Complete mappings for each of your graph model’s
nodes and relationships in any order you prefer. As
you map, Aura Workspace places a green checkmark
next to each fully mapped element, indicating that
all fields for that node or relationship have been
successfully populated:

The Developer’s Guide: How to Build a Knowledge Graph

13

Figure 35. Complete mappings screen

After completing the mapping process for all
elements of your knowledge graph, you’re ready to
populate the database.

Click the Run import button to load your data:

Figure 36. Run import screen

This action starts the import process. You’ll see a
progress bar indicating the status of the import.
Once complete, a pop-up window will display the
import results. The window provides a quick overview
of the import process outcome and lets you verify
whether the data was successfully imported into your
knowledge graph.

Figure 37. Import results screen

Click the X to close the pop-up window.

Now that the data is imported into the database,
you can use queries to understand behaviors and
patterns in the data.

Query Your Knowledge Graph
You will query your knowledge graph using the
Cypher query language. Cypher is the most widely
adopted implementation of the ISO Graph Query
Language (GQL) standard designed specifically for
graph databases. Cypher is a declarative language
(like SQL), which means you write queries by
specifying the results you want and not dictating
how to get them. It offers several advantages over
traditional query languages like SQL or SPARQL,
including reduced code complexity, easier debugging,
and intuitive representation of data patterns.

Cypher expresses graph patterns in a way that
resembles how they’re drawn on a whiteboard. For
instance, a statement like “customer orders product”
can be represented in Cypher as:

https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/blog/gql-international-standard/
https://neo4j.com/blog/gql-international-standard/

The Developer’s Guide: How to Build a Knowledge Graph

14

(c:Customer)-[r:ORDERS]->(p:Product)

Figure 38. Cypher “customer orders product” diagram

The next sections cover the three most important
Cypher clauses you’ll need to write queries and
interact with your knowledge graph:

1. MATCH finds and returns the nodes or
patterns specified.

2. CREATE adds new nodes or patterns specified
to the graph.

3. MERGE executes a find-or-create operation, first
checking if the pattern exists in the graph (MATCH),
then either returns the existing pattern or creates the
pattern if it doesn’t exist.

For a more comprehensive understanding of
Cypher, the Cypher Fundamentals course on
Neo4j GraphAcademy offers an in-depth overview
of Cypher and provides hands-on exercises to
reinforce your learning.

MATCH Clause

Cypher’s MATCH clause finds nodes or patterns in a
graph database. Use MATCH when you want to find
nodes and relationships in your graph, an essential
part of data retrieval and analysis. It serves a similar
purpose to the SELECT statement in SQL, allowing
you to retrieve data based on specified criteria.

Explore your Northwind knowledge graph with the
queries in the next paragraphs.

Navigate to Tools > Query in the left menu and enter
the following Cypher code in the query box at the
top right:

MATCH (p:Product)-[rel:PART_OF]-
>(c:Category {categoryName: “Bever-
ages”})

RETURN p, rel, c;

This query finds all products that belong to the
beverage category. It’s a common type of query in
ecommerce systems where you want to look up
products in a specific category. Let’s break down
the query:

•	 MATCH (p:Product)-[rel:PART_OF]-
>(c:Category {categoryName:
“Beverages”}) matches “Product” nodes
(mapped to variable p) that have a “PART_OF”
relationship to a “Category” node (variable c).
The “Category” node is filtered to only match
where categoryName is “Beverages.”

•	 RETURN p, rel, c specifies the data to be
returned from the matched pattern - products
(p), PART_OF relationships (rel), and categories
(c):

Figure 39. Cypher `MATCH` beverages query

To execute the query, click the Play icon next to the
query box.

Figure 40. Executing the query screen

https://neo4j.com/docs/cypher-manual/current/clauses/match/
https://neo4j.com/docs/cypher-manual/current/clauses/create/
https://neo4j.com/docs/cypher-manual/current/clauses/merge/
https://graphacademy.neo4j.com/courses/cypher-fundamentals/
https://graphacademy.neo4j.com

The Developer’s Guide: How to Build a Knowledge Graph

15

Here’s the sample output:

Figure 41. Sample output screen

The query above displays a visualization of nodes
and relationships because we returned entire nodes
and relationships, but you can specify parts of the
pattern and workspace could display text, tables,
or other formats.

As an example, the “Ipoh Coffee” product has run out
of stock, and you need to identify which orders need
to be updated and customers contacted:

MATCH (c:Customer)-[r1:PURCHASED]-
>(o:Order)-[r2:ORDERS]->(p:Product
{productName: “Ipoh Coffee”})

RETURN c.companyName, COUNT(o) AS or-
ders, collect(o.orderID)

ORDER BY orders DESC;

First, the query searches for customers who
purchased orders that contain the “Ipoh Coffee”
product. The next line returns the customer’s
company name, the count of orders impacted, and
the affected order IDs in a list. The last line orders the
results by the number of orders, sorting from highest
to lowest (`DESC`, for descending order).

The output is as follows:

Figure 42. Out-of-stock product impacts

Next, produce might be having weather that creates
a higher or lower average crop. To see how that might
affect your suppliers, customers, and inventory, you
could run a query like the following:

MATCH (cust:Customer)-[r1:PURCHASED]-
>(o:Order)-[r2:ORDERS]->(p:Product)-
[r3:PART_OF]->(c:Category {category-
Name:”Produce”}),

 (p)<-[r4:SUPPLIES]-(s:Supplier)
RETURN *;

This query finds customers who purchased orders
containing products that are part of the “Produce”
category, as well as the product suppliers, and
returns all the data.

Figure 43. Produce graph network

The results show us that there are a few products in
the “Produce” category (in purple), and the related

The Developer’s Guide: How to Build a Knowledge Graph

16

suppliers (in blue) are connected to a single product.
This tells us that while we don’t rely on one supplier
for multiple different products, we also do not have
backup suppliers if the existing (and only) supplier of
a product is impacted in some way.

So far, we’ve focused on how to query data that was
previously loaded. But what if you want to create
new data? You can use Cypher’s MERGE and CREATE
clauses to add new data to the graph.

CREATE and MERGE Clauses

The CREATE clause adds new nodes, relationships,
and properties to the graph. It always creates new
data, even if identical data already exists. It’s similar
to the INSERT statement in SQL.

The MERGE clause combines the functionality of
MATCH and CREATE. It first attempts to find the
specified pattern in the graph. If the pattern exists, it
behaves like MATCH and returns the existing data. If
the pattern doesn’t exist, it behaves like CREATE and
saves the pattern.

When using these clauses, it’s important to
understand that Cypher operates on entire patterns
rather than individual elements. When you MATCH
or MERGE, Cypher looks for the complete pattern
specified. For example, if you MERGE a pattern and
the nodes exist but the relationship does not,
Cypher will create the entire pattern new, producing
duplicate nodes.

To prevent data duplication, match and then merge
individual parts of the pattern separately to ensure
that only the new elements get created.

Here’s an example where the product category
“Grains/Cereals” already exists, but the product and
relationship are new:

MERGE (p:Product {productID: 78, pro-
ductName: “Organic Quinoa”})

MERGE (c:Category {categoryID: 9, ca-
tegoryName: “Grains/Cereals”})

MERGE (p)-[r:PART_OF]->(c)
RETURN *;

Figure 44. MERGE pattern screen

The message at the bottom of the image confirms
that the Cypher statement created one new node
(quinoa product) and one new relationship.

MERGE clauses for each node and relationship do
a find-or-create operation to ensure that you only
add a new product, category, or “PART_OF”
relationship when each does not already exist.
You can run this statement multiple times without
creating duplicates because the merges will find
the data that already exists.

Next Steps

Now that you have your initial version of a knowledge
graph, what can you do next? Remember that a
knowledge graph, especially one built on a graph
database with a flexible schema like Neo4j, can
expand and grow to answer more questions and
serve more business needs. Here are a few ideas for
expanding the utility of your knowledge graph:

•	 Expand your knowledge graph with additional
data sources

•	 Load unstructured data
•	 Enrich the knowledge graph using

graph algorithms

Rather than walk through each of these approaches
step by step, this guide will provide you with some
suggestions for how you can explore the next steps
on your own.

The Developer’s Guide: How to Build a Knowledge Graph

17

Expand Your Knowledge Graph With
Unstructured Data
You’ve built a knowledge graph with customer,
product, and order information, with product
categories as an organizing principle. You can
broaden the types of questions the knowledge graph
can answer by widening the scope of data it contains
or by adding more organizing principles. You can
load the data using the graphical data importer you
already learned about or explore other approaches.
At the time of this guide’s publication, AuraDB’s data
importer can also connect directly to PostgreSQL,
MySQL, and SQL Server databases, so you could load
structured data directly from a relational database.
Some ideas for other types of data and organizing
principles include:

•	 Adding an organizing principle for the
customers to help you answer questions about
different customer segments. You could include
location, industry, revenue, or other principles
depending on the types of questions being
asked by the business.

•	 Loading additional data about your customers
(such as web clickstream activity), which would
enable you to tie customers’ behavior to their
purchases and use the knowledge graph to
offer recommendations.

•	 Adding supply chain information for the
products in the knowledge graph, which his
would enable you to use the knowledge graph
to optimize the supply chain and mitigate the
risk of disruption.

These ideas are, of course, just a starting point. You
can follow the process outlined in this guide to come
up with your own ideas.

Load Unstructured Data
One of the things that a knowledge graph built
with the Neo4j graph database can do is combine
structured and unstructured or semi-structured
data in a single knowledge graph. Integrating these
types of data enables you to answer questions that
wouldn’t otherwise be possible. GenAI use cases, in
particular, can benefit from this capability by using
vector embeddings and similarity searches to apply
GraphRAG techniques for building applications that

enable end users to interact with and ask questions
of the knowledge graph using plain language.

You can use Neo4j’s LLM Knowledge Graph Builder
to load unstructured data (such as PDFs) into your
existing knowledge graph. To experiment with this
approach, you can use the sample PDF invoices from
the Northwind order purchases to get started. The
tool uses an LLM to extract nodes and relationships
from unstructured content and bridge the
unstructured data (with vector representations) and
structured data in a single knowledge graph.

If you want to use the LLM Knowledge Graph
Builder with an existing knowledge graph, you can
take a couple of steps to help the Builder integrate
with your existing graph. First, the Builder uses a
specific label Entity (with two underscores each at
the beginning and end) and property *id* to merge
information into an existing graph; you can set this
label and property by running the following Cypher:

MATCH (p:Product) SET p.id=p.product-
Name, p:__Entity__

This query will match all existing nodes with
the Product label, set the id property to the
productName and add an Entity label. The Builder
will use this label and property when it finds Product
information in the unstructured data and use the
existing Products instead of creating new ones. The
other step is to provide the Builder with suggested
labels and relationship types to use. Do this by
clicking the Graph Enhancement button after you
connect the Builder to your database and provide
the suggested node labels and relationship types as
shown in the image below:

Figure 45. Providing the Builder with suggested labels and

relationship types screen

https://neo4j.com/blog/what-is-graphrag/
https://llm-graph-builder.neo4jlabs.com
https://github.com/neo4j-examples/developers-guide-to-knowledge-graphs
https://github.com/neo4j-examples/developers-guide-to-knowledge-graphs

The Developer’s Guide: How to Build a Knowledge Graph

18

Now when you load the PDF invoices, the LLM
Knowledge Graph Builder will connect the invoice
information to the existing products to create a
single integrated knowledge graph built from both
structured and unstructured data.

Enrich Your Knowledge Graph Using
Graph Algorithms

In addition to making the knowledge graph more
useful with more data or organizing principles, you
can also use graph algorithms to uncover more
insight from your knowledge graph. Algorithms such
as node similarity (to use similar customers’ behavior
to recommend products) or pathfinding (to optimize
supply chains) bring advanced capabilities that
unlock deeper or previously hidden patterns in
the data.

Use Cases and
Design Patterns

The schema of a knowledge graph makes it
straightforward to represent complex business
relationships without extensive preplanning. You can
incorporate additional information without having to
make disruptive changes, just as we explored in the
previous section.

A knowledge graph’s context-rich data structure
also enhances the explainability of insights since
a knowledge graph stores relationships between
data and its sources. Most importantly, it produces
more accurate and relevant insights than siloed data
systems, as it combines data from multiple systems
into a single view.

Figure 46. Seven graphs of the enterprise

The next section explores a few use cases of
knowledge graphs to illustrate these benefits
in practice.

Supply Chain
Effective supply chain management requires
understanding relationships between suppliers,
distributors, warehouses, transportation logistics,
raw materials, products, etc. A knowledge graph
is a natural way to model and store this kind of
information because the connections between
different pieces of data are numerous, complex,
and (often) constantly changing. Because of these
characteristics, a knowledge graph provides a strong
foundation for supply chain optimization, contingency
planning, and risk management.

The benefits of using a knowledge graph for supply
chain insights include:

•	 The impact of a supply chain disruption can
be easily found by following the relationships
downstream from the disruption.

•	 Graph algorithms, such as shortest path, can
help to optimize delivery routes and sourcing
strategies for time, cost, or other metrics.

•	 Graph queries can quickly identify choke
points in a supply chain, which provides an
opportunity to find alternative suppliers,
transportation routes, etc. to mitigate the risk
at that critical point in the network.

Supply chains work well as knowledge graphs
because they consist of multiple complex stages,
inputs, outputs, and connection points. Working with
this data as a graph rather than in tables is much
more intuitive and allows for better insights.

To learn more about using a knowledge graph for
supply chain, check out the article series on graph
data science for supply chains.

Entity Resolution
Entity resolution is the process of identifying whether
multiple records are referencing the same real-world
entity. In its simplest form, you can perform entity
resolution with hand-crafted queries to compare
key identifying attributes according to a company’s
business rules. However, this approach takes a lot of

https://neo4j.com/product/graph-data-science/
https://neo4j.com/developer-blog/supply-chain-neo4j-gds-bloom/
https://neo4j.com/developer-blog/supply-chain-neo4j-gds-bloom/

The Developer’s Guide: How to Build a Knowledge Graph

19

effort to write code and a lot of time to run
the comparisons.

With a knowledge graph, you can accelerate the
development and runtime requirements of entity
resolution. Storing data as a knowledge graph has
several advantages over other approaches:

•	 Shared identifiers or attributes can be easily
discovered by modeling them as separate
nodes in the knowledge graph. Modeling in
this way makes it clear when two entities share
common information and are a candidate
for merging.

•	 Graph algorithms, such as weakly connected
components, can segment the knowledge
graph into separated communities, where there
are no shared connections between the data.
This helps reduce the number of comparisons
needed in entity resolution because nodes in
separate communities don’t need to
be compared.

•	 Knowledge graphs speed up transitive
comparisons, which are needed to identify
when more than two digital entities represent
the same real-world entity.

To learn more about using a knowledge graph for
entity resolution, see “Graph Data Science Use Cases:
Entity Resolution.”

GenAI
Despite LLMs’ impressive ability to produce
contextually relevant outputs, they have significant
weaknesses. They lack access to real-time data,
and they can’t incorporate private or proprietary
information not included in their training set.
Furthermore, responses are unverified and don’t
include the source(s) on which the LLM has based
an answer. This can lead to outdated, incomplete, or
incorrect responses in rapidly evolving fields or when
dealing with company-specific knowledge.

Graph-based retrieval-augmented generation
(GraphRAG) addresses these limitations by
integrating knowledge graph data sources with
LLMs. Using a knowledge graph as the data source
produces better results than using a traditional

database. A knowledge graph captures the context
inherent in the data relationships and can provide a
more complete and explainable answer than other
types of data stores.

This approach results in more nuanced and accurate
responses and verifiable source data, which is
especially for important applications that require
complex reasoning or where accuracy is critical,
such as healthcare and finance.

For more information about GraphRAG techniques
and implementation details, refer to “What Is
GraphRAG”.

https://neo4j.com/blog/graph-data-science-use-cases-entity-resolution/
https://neo4j.com/blog/graph-data-science-use-cases-entity-resolution/
https://neo4j.com/blog/what-is-graphrag/
https://neo4j.com/blog/what-is-graphrag/

The Developer’s Guide: How to Build a Knowledge Graph

20

Concluding Thoughts and
Further Learning

Because knowledge graphs represent information
as an interconnected network of entities and
relationships, they reflect the complex, context-
dependent nature of real-world information.

Structuring data in this way allows you to model
reality with remarkable fidelity, capturing nuances
across and within domains that siloed data structures
often miss. You can highlight connections and
insights that aren’t possible with traditional data
structures. A flexible structure also makes it easy
to integrate new data from various sources without
disrupting existing relationships.

Get Started with
Neo4j AuraDB
Neo4j uncovers hidden relationships and patterns
across billions of data connections deeply, easily,
and quickly, making graph databases an ideal choice
for building your first knowledge graph.

In this guide, you learned how to create a knowledge
graph from scratch and how to obtain insights from
it using the Cypher graph query language. You also
learned about the role the knowledge graph plays in
certain domains, like supply chains, entity resolution,
and GenAI.

Here are some immediate steps you can take to build
upon this foundational knowledge:

•	 Use your Neo4j instance to experiment with
different data models and explore complex
queries.

•	 Complete some of the free self-paced
courses on graph concepts and techniques in
GraphAcademy.

•	 Join the Neo4j Community to get support
and insights from fellow graph developers
and enthusiasts.

Build Now

https://graphacademy.neo4j.com
https://community.neo4j.com
https://neo4j.com/product/auradb/

