
Public

SMART CONTRACT AUDIT REPORT

for

PawnFi ApeStaking

Prepared By: Xiaomi Huang

PeckShield
June 5, 2023

1/19 PeckShield Audit Report #: 2023-104

contact@peckshield.com

Public

Document Properties

Client PawnFi
Title Smart Contract Audit Report
Target ApeStaking
Version 1.2
Author Xuxian Jiang
Auditors Stephen Bie, Luck Hu, Xuxian Jiang
Reviewed by Patrick Lou
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.2 June 5, 2023 Xuxian Jiang Post Release #2
1.1 May 29, 2023 Xuxian Jiang Post Release #1
1.0 May 10, 2023 Xuxian Jiang Final Release
1.0-rc May 5, 2023 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/19 PeckShield Audit Report #: 2023-104

Public

Contents

1 Introduction 4
1.1 About ApeStaking . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 6

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Revisited Borrow/Supply Rate Calculation . 12
3.2 Empty Market Avoidance With MINIMUM_LIQUIDITY Enforcement 13
3.3 Improved Precision By Multiplication And Division Reordering 15
3.4 Improved Owner Verification of Staking NFTs . 16

4 Conclusion 18

References 19

3/19 PeckShield Audit Report #: 2023-104

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
PawnFi’s ApeStaking protocol, we outline in the report our systematic approach to evaluate poten-
tial security issues in the smart contract implementation, expose possible semantic inconsistencies
between smart contract code and design document, and provide additional suggestions or recommen-
dations for improvement. Our results show that the given version of PawnFi can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About ApeStaking

The ApeStaking protocol is part of the PawnFi ecosystem and is designed to streamline the staking
process for PawnFi users, enabling them to effortlessly stake their Ape coins and benefit from com-
pounded rewards through automatic reinvestment. Catering to both experienced NFT enthusiasts
engaged with PawnFi’s consignment, leverage, and lending modules, as well as newcomers seeking
to maximize their Ape staking returns, the contract offers a seamless experience for all users. By
interacting directly with the Horizen Labs Contract, ApeStaking ensures the most legitimate Ape coin
rewards, providing users with a secure and efficient solution to optimize their staking investments.
The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of ApeStaking

Item Description
Name ApeStaking

Website https://pawnfi.com
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report June 5, 2023

4/19 PeckShield Audit Report #: 2023-104

Public

In the following, we show the Git repositories of reviewed files and the commit hash values used
in this audit.

• https://github.com/PawnFi/ApeStaking.git (94b2bff)

• https://github.com/PawnFi/NFTFactory.git (966b049)

And here are the commit IDs after all fixes for the issues found in the audit have been checked
in:

• https://github.com/PawnFi/ApeStaking.git (b39c6c6)

• https://github.com/PawnFi/NFTFactory.git (a5cbf8a)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

5/19 PeckShield Audit Report #: 2023-104

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered

6/19 PeckShield Audit Report #: 2023-104

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/19 PeckShield Audit Report #: 2023-104

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/19 PeckShield Audit Report #: 2023-104

Public

comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

9/19 PeckShield Audit Report #: 2023-104

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the ApeStaking implementation. During the first
phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 2

Informational 1

Total 4

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

10/19 PeckShield Audit Report #: 2023-104

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability, 2 low-severity vulnerabilities, and 1 informational recommendation.

Table 2.1: Key ApeStaking Audit Findings

ID Severity Title Category Status
PVE-001 Informational Revisited Borrow/Supply Rate Calcula-

tion
Business Logic Resolved

PVE-002 Low Empty Market Avoidance with MINI-
MUM_LIQUIDITY Enforcement

Numeric Errors Resolved

PVE-003 Low Improved Precision By Multiplication
And Division Reordering

Numeric Errors Resolved

PVE-004 Medium Improved Owner Verification of Staking
NFTs

Business Logic Resolved

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/19 PeckShield Audit Report #: 2023-104

Public

3 | Detailed Results

3.1 Revisited Borrow/Supply Rate Calculation

• ID: PVE-001

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: ApePool

• Category: Coding Practices [4]

• CWE subcategory: CWE-1041 [1]

Description

The ApeStaking protocol has a built-in lending component of ApePool, which accepts Ape coins as the
underlying asset. While examining the on-chain per-block borrow rate and supply rate, we notice
the current approach may be revisited.

To elaborate, we show below the implementation of two related routines: borrowRatePerBlock()

and supplyRatePerBlock(). The first routine returns the current per-block borrow interest rate while
the second routine returns the current per-block supply interest rate. It comes to our attention that
each has a common part, i.e., getRewardRatePerBlock(). In the calculation of per-block supply interest
rate, there is a need to take into consideration the current utilization as well as the reserve factor,
which is missing in the common part.

111 /**
112 * @notice Returns the current per -block borrow interest rate for this cToken
113 * @return The borrow interest rate per block , scaled by 1e18
114 */
115 function borrowRatePerBlock () external view returns (uint) {
116 return interestRateModel.getBorrowRate(getCashPrior (), totalBorrows , 0) +

getRewardRatePerBlock ();
117 }

119 /**
120 * @notice Returns the current per -block supply interest rate for this cToken
121 * @return The supply interest rate per block , scaled by 1e18
122 */

12/19 PeckShield Audit Report #: 2023-104

Public

123 function supplyRatePerBlock () external view returns (uint) {
124 return interestRateModel.getSupplyRate(getCashPrior (), totalBorrows , 0,

reserveFactorMantissa) + getRewardRatePerBlock ();
125 }

Listing 3.1: ApePool::borrowRatePerBlock()/supplyRatePerBlock()

Recommendation Revisit the logic to compute the per-block supply interest rate.

Status The issue has been fixed by this commit: 693fbec.

3.2 Empty Market Avoidance With MINIMUM_LIQUIDITY
Enforcement

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ApePool

• Category: Numeric Errors [6]

• CWE subcategory: CWE-190 [2]

Description

As mentioned earlier, the ApePool contract is in essence an over-collateralized lending pool that
has the lending functionality and supports a number of normal lending functionalities for supplying
and borrowing users, i.e., mint()/redeem() and borrow()/repay(). While reviewing the redeem logic,
we notice the current implementation has a precision issue that has been reflected in a recent
HundredFinance hack.

To elaborate, we show below the related redeemFresh() routine. As the name indicates, this
routine is designed to redeems the pool tokens in exchange for the underlying asset. When the
user indicates the underlying asset amount (via redeemUnderlying()), the respective redeemTokens

is computed as redeemTokens = div_(redeemAmountIn, exchangeRate) (line 470). Unfortunately, the
current approach may unintentionally introduce a precision issue by computing the redeemTokens

amount against the protocol. Specifically, the resulting flooring-based division introduces a precision
loss, which may be just a small number but plays a critical role when certain boundary conditions are
met – as demonstrated in the recent HundredFinance hack: https://blog.hundred.finance/15-04-23-

hundred-finance-hack-post-mortem-d895b618cf33.

447 function redeemFresh(address redeemer , uint redeemTokensIn , uint redeemAmountIn)
internal {

448 require(redeemTokensIn == 0 redeemAmountIn == 0, "one of redeemTokensIn or
redeemAmountIn must be zero");

13/19 PeckShield Audit Report #: 2023-104

https://github.com/PawnFi/ApeStaking/commit/693fbec

Public

450 /* exchangeRate = invoke Exchange Rate Stored () */
451 Exp memory exchangeRate = Exp({ mantissa: exchangeRateStoredInternal () });

453 uint redeemTokens;
454 uint redeemAmount;
455 /* If redeemTokensIn > 0: */
456 if (redeemTokensIn > 0) {
457 /*
458 * We calculate the exchange rate and the amount of underlying to be

redeemed:
459 * redeemTokens = redeemTokensIn
460 * redeemAmount = redeemTokensIn x exchangeRateCurrent
461 */
462 redeemTokens = redeemTokensIn;
463 redeemAmount = mul_ScalarTruncate(exchangeRate , redeemTokensIn);
464 } else {
465 /*
466 * We get the current exchange rate and calculate the amount to be redeemed:
467 * redeemTokens = redeemAmountIn / exchangeRate
468 * redeemAmount = redeemAmountIn
469 */
470 redeemTokens = div_(redeemAmountIn , exchangeRate);
471 redeemAmount = redeemAmountIn;
472 }

474 /* Verify market ’s block number equals current block number */
475 if (accrualBlockNumber != getBlockNumber ()) {
476 revert RedeemFreshnessCheck ();
477 }
478 ...
479 }

Listing 3.2: ApePool::redeemFresh()

Recommendation Properly revise the above routine to ensure the precision loss needs to be
computed in favor of the protocol, instead of the user. In particular, we need to ensure that markets
are never empty by minting small pool token balances at the time of market creation so that we can
prevent the rounding error being used maliciously. A deposit as small as 1 wei is sufficient.

Status The issue has been resolved since it is the only supported market and the borrow is not
directly possible.

14/19 PeckShield Audit Report #: 2023-104

Public

3.3 Improved Precision By Multiplication And Division
Reordering

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ApeStaking

• Category: Numeric Errors [6]

• CWE subcategory: CWE-190 [2]

Description

SafeMath is a widely-used Solidity math library that is designed to support safe math operations by
preventing common overflow or underflow issues when working with uint256 operands. While it
indeed blocks common overflow or underflow issues, the lack of float support in Solidity may
introduce another subtle, but troublesome issue: precision loss. In this section, we examine one
possible precision loss source that stems from the different orders when both multiplication (mul) and
division (div) are involved.

In particular, we use the ApeStaking::unstakeAndRepay() as an example. This routine is used to
suspend staking for users with high health factor.

597 function unstakeAndRepay(address userAddr , address [] calldata nftAssets , uint256 []
calldata nftIds) external nonReentrant {

598 require(nftAssets.length == nftIds.length , "size err");
599 uint256 totalIncome;
600 uint256 totalPay;
601 (totalIncome , totalPay) = getUserHealth(userAddr);
602 require(totalIncome < totalPay * stakingConfiguration.liquidateRate /

BASE_PERCENTS , "income less");
603 for(uint256 i = 0; i < nftAssets.length; i++) {
604 require(userAddr == _nftInfo[nftAssets[i]]. staker[nftIds[i]], "owner err");
605 _onStopStake(nftAssets[i], nftIds[i], RewardAction.STOPSTAKE);
606 (totalIncome , totalPay) = getUserHealth(userAddr);
607 if(totalIncome >= totalPay * stakingConfiguration.borrowSafeRate /

BASE_PERCENTS) {
608 _transferAsset(pawnToken , msg.sender , stakingConfiguration.

liquidatePawnAmount);
609 break;
610 }
611 }
612 }

Listing 3.3: ApeStaking::unstakeAndRepay()

We notice the comparison between totalIncome and totalPay (line 602) involves mixed multipli-
cation and devision. For improved precision, it is better to revise as follows: require(totalIncome *

BASE_PERCENTS < totalPay * stakingConfiguration.liquidateRate) (line 602). Note that the resulting

15/19 PeckShield Audit Report #: 2023-104

Public

precision loss may be just a small number, but it plays a critical role when certain boundary conditions
are met. And it is always the preferred choice if we can avoid the precision loss as much as possible.
Note the if-statement (line 607) shares the same issue.

Recommendation Revise the above calculations to better mitigate possible precision loss.

Status The issue has been fixed by this commit: fa21184.

3.4 Improved Owner Verification of Staking NFTs

• ID: PVE-004

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: ApeStaking

• Category: Business Logic [5]

• CWE subcategory: CWE-708 [3]

Description

The ApeStaking contract streamlines the staking process for PawnFi users, enabling them to effortlessly
stake their Ape coins and benefit from compounded rewards through automatic reinvestment. In the
process of reviewing the current staking logic, we notice the owner verification of staking NFTs should
be improved.

In particular, we show below the related routine _validOwner(). As the name indicates, this routine
is designed to verify the NFT owner. It has a rather straightforward logic in querying the possible
holder in the _nftInfo array. If it is not recorded (line 363), it further queries the ptokenStaking

contract for the current holding contract. The returned nftOwner is queried again for the actual
owner. Note the current holding contract can be whitelisted to ensure only the approved holding
contracts may be queried. Otherwise, the current owner verification may be bypassed.

353 /**
354 * @notice Verify NFT owner
355 * @param userAddr User address
356 * @param ptokenStaking Address of NFT staking agency
357 * @param nftAsset nft asset address
358 * @param nftId nft id
359 * @return bool true: Verification pass false: Verification fail
360 */
361 function _validOwner(address userAddr , address ptokenStaking , address nftAsset ,

uint256 nftId) internal view returns (bool) {
362 address holder = _nftInfo[nftAsset]. depositor[nftId];
363 if(holder == address (0)) {
364 address nftOwner = IPTokenApeStaking(ptokenStaking).getNftOwner(nftId);
365 holder = INftGateway(nftOwner).nftOwner(userAddr , nftAsset , nftId);
366 }

16/19 PeckShield Audit Report #: 2023-104

https://github.com/PawnFi/ApeStaking/commit/fa21184

Public

367 return holder == userAddr;
368 }

Listing 3.4: ApeStaking::_validOwner()

Recommendation Improve the above owner verification logic to ensure the final holder is the
intended one.

Status The issue has been fixed by the following commit: e1c1fb7.

17/19 PeckShield Audit Report #: 2023-104

https://github.com/PawnFi/NFTFactory_ApeStaking/commit/e1c1fb7

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the ApeStaking protocol, which is part
of the PawnFi ecosystem and is designed to streamline the staking process for PawnFi users, enabling
them to effortlessly stake their Ape coins and benefit from compounded rewards through automatic
reinvestment. Catering to both experienced NFT enthusiasts engaged with PawnFi’s consignment,
leverage, and lending modules, as well as newcomers seeking to maximize their Ape staking returns,
the contract offers a seamless experience for all users. By interacting directly with the Horizen Labs

Contract, ApeStaking ensures the most legitimate Ape coin rewards, providing users with a secure and
efficient solution to optimize their staking investments. The current code base is clearly organized
and those identified issues are promptly confirmed and resolved.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

18/19 PeckShield Audit Report #: 2023-104

Public

References

[1] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[2] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html.

[3] MITRE. CWE-708: Incorrect Ownership Assignment. https://cwe.mitre.org/data/definitions/

708.html.

[4] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[5] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[6] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

19/19 PeckShield Audit Report #: 2023-104

https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/708.html
https://cwe.mitre.org/data/definitions/708.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About ApeStaking
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Revisited Borrow/Supply Rate Calculation
	Empty Market Avoidance With MINIMUM_LIQUIDITY Enforcement
	Improved Precision By Multiplication And Division Reordering
	Improved Owner Verification of Staking NFTs

	Conclusion
	References

