
Public

SMART CONTRACT AUDIT REPORT

for

PawnFi Protocol

Prepared By: Xiaomi Huang

PeckShield
June 5, 2023

1/21 PeckShield Audit Report #: 2023-052

contact@peckshield.com

Public

Document Properties

Client PawnFi
Title Smart Contract Audit Report
Target PawnFi
Version 1.1
Author Xuxian Jiang
Auditors Stephen Bie, Luck Hu, Xuxian Jiang
Reviewed by Patrick Lou
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.1 June 5, 2023 Xuxian Jiang Post Final #1
1.0 April 1, 2023 Xuxian Jiang Final Release
1.0-rc March 12, 2023 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/21 PeckShield Audit Report #: 2023-052

Public

Contents

1 Introduction 4
1.1 About PawnFi . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 8

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Implicit Decimal Assumption of Staking Token in SAFE 12
3.2 Potential getMarket() Manipulation via FeeManager::initialMarket() 13
3.3 Timely rewardsPerSecond Refresh Before Changing reductionRatio 14
3.4 Accommodation of Non-ERC20-Compliant Tokens 15
3.5 Improved Order Matching in PawnfiApproveTrade 17
3.6 Trust Issue of Admin Keys . 18

4 Conclusion 20

References 21

3/21 PeckShield Audit Report #: 2023-052

Public

1 | Introduction

Given the opportunity to review the PawnFi design document and related smart contract source code,
we outline in the report our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of PawnFi can be further improved due to the presence of several
issues related to either security or performance. This document outlines our audit results.

1.1 About PawnFi

PawnFi is a leading provider of instant liquidity solutions for NFTs. By leveraging the P-Token mechanism
and integrating multi-modal features, PawnFi is designed to unlock deep liquidity and tap into the
potential of NFTs without requiring ownership or digital asset transfers. In contrast, existing platforms
like Blur/OpenSea offer a semi-primary market, where tokens are traded among different whales and
reach fewer buyers or users, resulting in a market ceiling. The P-Tokenmechanism provides a protective
layer that safeguards NFTs against extreme circumstances, enabling them to circulate safely across
the broader DeFi ecosystem. The basic information of PawnFi is as follows:

Table 1.1: Basic Information of PawnFi

Item Description
Name PawnFi

Website https://pawnfi.com
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report June 5, 2023

In the following, we show the Git repositories of reviewed files and the commit hash values used
in this audit.

4/21 PeckShield Audit Report #: 2023-052

Public

• https://github.com/PawnFi/PAWNtoken.git (7baa4c7)

• https://github.com/PawnFi/Marketplace.git (c4c8789)

• https://github.com/PawnFi/Tools.git (c559d22)

• https://github.com/PawnFi/DAO.git (77ca8fa)

• https://github.com/PawnFi/NFTFactory.git (966b049)

• https://github.com/PawnFi/Lending.git (f4ee084)

• https://github.com/PawnFi/LiquidityBoosting.git (7496621)

And here are the commit IDs after all fixes for the issues found in the audit have been checked
in:

• https://github.com/PawnFi/PAWNtoken.git (70d869b)

• https://github.com/PawnFi/Marketplace.git (ff23392)

• https://github.com/PawnFi/Tools.git (9ee405c)

• https://github.com/PawnFi/DAO.git (2fab3c6)

• https://github.com/PawnFi/NFTFactory.git (a5cbf8a)

• https://github.com/PawnFi/Lending.git (7fdebf9)

• https://github.com/PawnFi/LiquidityBoosting.git (70e2282)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

5/21 PeckShield Audit Report #: 2023-052

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.2: Vulnerability Severity Classification
Im

pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

6/21 PeckShield Audit Report #: 2023-052

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/21 PeckShield Audit Report #: 2023-052

Public

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

8/21 PeckShield Audit Report #: 2023-052

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/21 PeckShield Audit Report #: 2023-052

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the PawnFi implementation. During the first phase of
our audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logic, examine
system operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 3

Low 2

Informational 1

Total 6

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

10/21 PeckShield Audit Report #: 2023-052

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 3 medium-severity
vulnerabilities, 2 low-severity vulnerabilities, and 1 informational recommendation.

Table 2.1: Key PawnFi Audit Findings

ID Severity Title Category Status
PVE-001 Informational Implicit Decimal Assumption of Staking

Token in SAFE
Business Logic Fixed

PVE-002 Medium Potential getMarket() Manipulation via
FeeManager::initialMarket()

Business Logic Fixed

PVE-003 Low Timely rewardsPerSecond Refresh Be-
fore Changing reductionRatio

Coding Practices Fixed

PVE-004 Low Accommodation of Non-ERC20-
Compliant Tokens

Time and State Fixed

PVE-005 Medium Improved Order Matching in PawnfiAp-
proveTrade

Business Logic Fixed

PVE-006 Medium Trust Issue Of Admin Keys Security Features Fixed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/21 PeckShield Audit Report #: 2023-052

Public

3 | Detailed Results

3.1 Implicit Decimal Assumption of Staking Token in SAFE

• ID: PVE-001

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: SAFE

• Category: Coding Practices [5]

• CWE subcategory: CWE-1041 [1]

Description

The PawnFi protocol has a DAO in place, which offers a governance mechanism to incentivize placing
token in SAFE, voting, and participating in governance processes to earn rewards. The DAO enables
iToken staking for PAWN token mining. Additionally, the contract provides for the distribution of lending
market revenue to voting power holders. While examining the supported staking token in DAO, we
notice an implicit assumption on its decimal and this implicit assumption is better explicitly enforced.

To elaborate, we show below the implementation of the related availableVotes() function. This
function is designed to return the amount of unused votes for the current week. It comes to our
attention the computed userTotalVotes is derived from userTotalVotes = tokenSAFE.userWeight(user

)/ 1e18 (line 207). The division of 1e18 implicitly assumes the decimals of the staking token is 18.
With that, we suggest to enforce the assumption when the staking token is applied.

199 /**
200 * @notice Get the amount of unused votes for for the current week being voted on
201 * @param user Address to query
202 * @return uint Amount of unused votes Amount of unused votes
203 */
204 function availableVotes(address user) external view returns (uint256) {
205 uint256 week = getWeek ();
206 uint256 usedVotes = userVotes[user][week];
207 uint256 userTotalVotes = tokenSAFE.userWeight(user) / 1e18;
208 return userTotalVotes - usedVotes;
209 }

Listing 3.1: IncentiveVoting::availableVotes()

12/21 PeckShield Audit Report #: 2023-052

Public

Recommendation Make the implicit assumption of the staking token’s decimals in DAO explicit.

Status The issue has been fixed by this commit: d735196.

3.2 Potential getMarket() Manipulation via
FeeManager::initialMarket()

• ID: PVE-002

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: FeeManager

• Category: Business Logic [6]

• CWE subcategory: CWE-708 [3]

Description

The PawnFi protocol’s DAO has a FeeManager contract that is designed to collect and distribute protocol
fees from various lending pools. To facilitate the management of lending pools, FeeManager provides
an initialMarket() routine to initialize the given lending market. Our analysis shows that this routine
can be exploited to manipulate the market accounting.

Specifically, we show below the implementation of this routine. It comes to our attention this
specific routine is not guarded and can be invoked by anyone. As a result, a malicious actor may
call this routine to provide a crafted market, which bypasses the pendingAdmin check and re-initializes
the accounting of the underlying asset. Note the underlying asset is returned from underlyingAsset(

market) (line 151), which can be fully controlled by the malicious actor.

148 function initialMarket(address market) public {
149 address pendingAdmin = ICToken(market).pendingAdmin ();
150 if(pendingAdmin == address(this)) {
151 address asset = underlyingAsset(market);
152 getMarket[asset] = market;
153 ICToken(market)._acceptAdmin ();
154 uint256 totalReserves = ICToken(market).totalReserves ();
155 marketInfo[market] = MarketInfo ({
156 lastReserves: totalReserves ,
157 lastTime: startTime ,
158 claimed: 0
159 });
160 }
161 }

Listing 3.2: FeeManager::initialMarket())

Recommendation Make the above function privileged so that only the owner is allowed to add
a new market.

13/21 PeckShield Audit Report #: 2023-052

https://github.com/PawnFi/DAO/commit/d735196

Public

Status The issue has been fixed by this commit: ff7601d.

3.3 Timely rewardsPerSecond Refresh Before Changing
reductionRatio

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: IncentiveVoting

• Category: Business Logic [6]

• CWE subcategory: CWE-708 [3]

Description

The PawnFi protocol supports flexible support of rewards, which can be controlled in a number of
protocol parameters, e.g., rewardsPerSecond and reductionRatio. While examining the dynamic update
of reductionRatio, we notice the lack of timely refresh of certain protocol state before applying the
new reduction ratio.

In particular, we show below the full implementation of setReductionRatio(), which is designed to
apply a new reduction rate. It comes to our attention that the rewardsPerSecond array is not timely
updated on previous epochs for reward distribution. With that, we need to timely update the array
before applying the new reduction rate.

118 /**
119 * @notice Set reduction rate
120 * @param newReductionRatio New reduction rate
121 */
122 function setReductionRatio(uint256 newReductionRatio) external onlyOwner {
123 require(newReductionRatio < DENOMINATOR);
124 emit ReductionRatioUpdate(reductionRatio , newReductionRatio);
125 reductionRatio = newReductionRatio;
126 }

Listing 3.3: IncentiveVoting::setReductionRatio()

Recommendation Revise the above routine to properly update the rewardsPerSecond array. An
example revision is shown below:

118 /**
119 * @notice Set reduction rate
120 * @param newReductionRatio New reduction rate
121 */
122 function setReductionRatio(uint256 newReductionRatio) external onlyOwner {
123 require(newReductionRatio < DENOMINATOR);
124 uint256 week = getWeek ();
125 _refreshRewardPerSecond(week , rewardsPerSecond.length);

14/21 PeckShield Audit Report #: 2023-052

https://github.com/PawnFi/DAO/commit/ff7601d

Public

126 emit ReductionRatioUpdate(reductionRatio , newReductionRatio);
127 reductionRatio = newReductionRatio;
128 }
129
130 function _refreshRewardPerSecond(uint256 week , uint256 length) private {
131 if (length <= week / 4) {
132 uint256 perSecond = rewardsPerSecond[length -1];
133 while (length <= week / 4) {
134 perSecond = perSecond * reductionRatio / DENOMINATOR;
135 length += 1;
136 rewardsPerSecond.push(perSecond);
137 }
138 }
139 }

Listing 3.4: Revised IncentiveVoting::setReductionRatio()

Status The issue has been fixed by this commit: ec97432.

3.4 Accommodation of Non-ERC20-Compliant Tokens

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Business Logic [6]

• CWE subcategory: CWE-708 [3]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the transfer() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. Specifically, the transfer() routine does not have a return value defined and
implemented. However, the IERC20 interface has defined the transfer() interface with a bool return
value. As a result, the call to transfer() may expect a return value. With the lack of return value
of USDT’s transfer(), the call will be unfortunately reverted.

126 f unc t i on t r a n s f e r (address _to , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {
127 u in t f e e = (_value . mul (b a s i s P o i n t sR a t e)) . d i v (10000) ;
128 i f (f e e > maximumFee) {
129 f e e = maximumFee ;
130 }
131 u in t sendAmount = _value . sub (f e e) ;
132 ba l a n c e s [msg . sender] = ba l a n c e s [msg . sender] . sub (_value) ;

15/21 PeckShield Audit Report #: 2023-052

https://github.com/PawnFi/DAO/commit/ec97432

Public

133 ba l a n c e s [_to] = ba l a n c e s [_to] . add (sendAmount) ;
134 i f (f e e > 0) {
135 ba l a n c e s [owner] = ba l a n c e s [owner] . add (f e e) ;
136 Transfer (msg . sender , owner , f e e) ;
137 }
138 Transfer (msg . sender , _to , sendAmount) ;
139 }

Listing 3.5: USDT::transfer()

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful.

In current implementation, if we examine the RewardDistributor::claim() routine that is designed
to claim the funds according to the given Merkle proof. To accommodate the specific idiosyncrasy,
there is a need to user safeTransfer(), instead of transfer() (line 38).

28 f unc t i on c l a im (
29 address account ,
30 uint256 amount ,
31 bytes32 [] memory p roo f
32) ex te rna l {
33 bytes32 l e a f = keccak256 (ab i . encodePacked (account , amount)) ;
34 r equ i r e (! c l a imed [l e a f] , "Airdrop already claimed") ;
35 M e r k l e V e r i f i e r . _v e r i f yP r o o f (l e a f , merkleRoot , p r oo f) ;
36 c l a imed [l e a f] = t rue ;

38 r equ i r e (IERC20 (token) . t r a n s f e r (account , amount) , "Transfer failed") ;

40 emit Cla imed (account , amount) ;
41 }

43 f unc t i on r e c l a im (uint256 amount) ex te rna l onlyOwner {
44 r equ i r e (block . timestamp > re c l a imPe r i o d , "Tokens cannot be reclaimed") ;
45 r equ i r e (IERC20 (token) . t r a n s f e r (msg . sender , amount) , "Transfer failed") ;
46 }

Listing 3.6: RewardDistributor :: claim()/reclaim()

In the meantime, we also suggest to use the safe-version of transfer() in other related routines,
including RewardDistributor::reclaim() and FeeManager::claimRefreshReward().

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status The issue has been fixed by the following commits: 8a679cd, f66fb37, and c855196.

3.5 Improved Order Matching in PawnfiApproveTrade

16/21 PeckShield Audit Report #: 2023-052

https://github.com/PawnFi/DAO/commit/8a679cd
https://github.com/PawnFi/DAO/commit/f66fb37
https://github.com/PawnFi/Tools/commit/c855196

Public

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: PawnfiApproveTrade

• Category: Business Logic [6]

• CWE subcategory: CWE-708 [3]

Description

The PawnFi protocol has a built-in Marketplace component, which offers an NFT listing. It facilitates
the purchase of a signed NFT by a buyer from a seller, with the seller being contractually obligated to
sell the NFT to the buyer at the price agreed upon and signed by both parties. While reviewing the
current logic, we notice the current order validation can be improved.

In the following, we show the implementation of the current order validation routine _validate

(). The signature validation in essence computes the hash of the given order and ensure it is not
expired, cancelled, or finished. It comes to our attention that the order expiry is validated by ensuring
require(order.deadline >= block.timestamp) (line 324). This validation can be improved as follows:
require(order.deadline ==0 || order.deadline >= block.timestamp).

323 function _validate(Order memory order) internal view returns (bytes32 digest) {
324 require(order.deadline >= block.timestamp , "Transaction expired!");
325
326 digest = hashOrder(order);
327 require (! cancelledOrFinalized[digest], "Already cancel or finalized.");
328
329 if (AddressUpgradeable.isContract(order.maker)) {
330 // 0x1626ba7e is the interfaceId for signature contracts (see IERC1271)
331 require(IERC1271Upgradeable(order.maker).isValidSignature(digest , order.sig)

== 0x1626ba7e , "Invalid signature");
332 } else {
333 address signer = digest.recover(order.sig);
334 require(signer != address (0) && signer == order.maker , "Invalid signature");
335 }
336 }

Listing 3.7: PawnfiApproveTrade::_validate()

Recommendation Improve the above validation of the given order to better accommodate the
specific case when order.deadline==0.

Status The issue has been fixed by this commit: f43ac09.

17/21 PeckShield Audit Report #: 2023-052

https://github.com/PawnFi/Tools/commit/f43ac09

Public

3.6 Trust Issue of Admin Keys

• ID: PVE-006

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [4]

• CWE subcategory: CWE-287 [2]

Description

In the PawnFi protocol, there is a privileged owner account that plays a critical role in governing and
regulating the system-wide operations (e.g., configuring various parameters and adding new allowed
tokens). It also has the privilege to control or govern the flow of assets managed by this protocol.
Our analysis shows that the privileged account needs to be scrutinized. In the following, we examine
the privileged account and the related privileged accesses in current contracts.

100 function setITokenStaking(IITokenStaking newITokenStaking , address [] memory
initialApprovedTokens) external {

101 require(address(iTokenStaking) == address (0));
102 iTokenStaking = newITokenStaking;
103 for (uint i = 0; i < initialApprovedTokens.length; i++) {
104 address token = initialApprovedTokens[i];
105 isApproved[token] = true;
106 approvedTokens.push(token);
107 newITokenStaking.addPool(token);
108 }
109 }
110
111 /**
112 * @notice Set feeManager contract address
113 * @param newFeeManager feeManager contract address
114 */
115 function setFeeManager(IFeeManager newFeeManager) external {
116 require(address(feeManager) == address (0));
117 feeManager = newFeeManager;
118 }
119
120 /**
121 * @notice Set reduction rate
122 * @param newReductionRatio New reduction rate
123 */
124 function setReductionRatio(uint256 newReductionRatio) external onlyOwner {
125 require(newReductionRatio < DENOMINATOR);
126 emit ReductionRatioUpdate(reductionRatio , newReductionRatio);
127 reductionRatio = newReductionRatio;
128 }

Listing 3.8: Example Privileged Functions in IncentiveVoting

18/21 PeckShield Audit Report #: 2023-052

Public

Note that if the privileged owner account is a plain EOA account, this may be worrisome and pose
counter-party risk to the exchange users. A multi-sig account could greatly alleviate this concern,
though it is still far from perfect. Specifically, a better approach is to eliminate the administration key
concern by transferring the role to a community-governed DAO. In the meantime, a timelock-based
mechanism can also be considered as mitigation.

Moreover, it should be noted that current contracts may have the support of being deployed
behind a proxy. And there is a need to properly manage the proxy-admin privileges as they fall in
this trust issue as well.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been resolved as the team plans to use the DAO to act as the privileged
owner.

19/21 PeckShield Audit Report #: 2023-052

Public

4 | Conclusion

In this audit, we have analyzed the PawnFi design and implementation. The protocol is a leading
provider of instant liquidity solutions for NFTs. By leveraging the P-Token mechanism and integrating
multi-modal features, PawnFi is designed to unlock deep liquidity and tap into the potential of NFTs
without requiring ownership or digital asset transfers. In contrast, existing platforms like Blur/OpenSea

offer a semi-primary market, where tokens are traded among different whales and reach fewer buyers
or users, resulting in a market ceiling. The P-Token mechanism provides a protective layer that
safeguards NFTs against extreme circumstances, enabling them to circulate safely across the broader
DeFi ecosystem. The current code base is clearly organized and those identified issues are promptly
confirmed and resolved.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

20/21 PeckShield Audit Report #: 2023-052

Public

References

[1] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-708: Incorrect Ownership Assignment. https://cwe.mitre.org/data/definitions/

708.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

21/21 PeckShield Audit Report #: 2023-052

https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/708.html
https://cwe.mitre.org/data/definitions/708.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About PawnFi
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Implicit Decimal Assumption of Staking Token in SAFE
	Potential getMarket() Manipulation via FeeManager::initialMarket()
	Timely rewardsPerSecond Refresh Before Changing reductionRatio
	Accommodation of Non-ERC20-Compliant Tokens
	Improved Order Matching in PawnfiApproveTrade
	Trust Issue of Admin Keys

	Conclusion
	References

