
Public

SMART CONTRACT AUDIT REPORT

for

AI Waifu

Prepared By: Xiaomi Huang

PeckShield
March 5, 2024

1/20 PeckShield Audit Report #: 2024-070

contact@peckshield.com

Public

Document Properties

Client AI Waifu
Title Smart Contract Audit Report
Target AI Waifu
Version 1.0
Author Xuxian Jiang
Auditors Jason Shen, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 March 5, 2024 Xuxian Jiang Final Release
1.0-rc February 21, 2024 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/20 PeckShield Audit Report #: 2024-070

Public

Contents

1 Introduction 4
1.1 About AI Waifu . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved Validation on Protocol Parameters in WaifuToken 11
3.2 Revisited Ownable Inheritance in Shop . 12
3.3 Redundant _taxProcessing() Handling in WaifuToken 13
3.4 Confused Defender Account in GameManager::tempt() 14
3.5 Trust Issue of Admin Keys . 16

4 Conclusion 18

References 19

3/20 PeckShield Audit Report #: 2024-070

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the AI Waifu protocol,
we outline in the report our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About AI Waifu

AI Waifu is designed to be a Waifu companion game. The players get to discover their Waifu backstory,
unlock NSFW content, flirt with other Waifus (PvP), and protect your Waifu through strategic resources,
as well as claim rewards for $WAIFU tokens. The basic information of audited contracts is as follows:

Table 1.1: Basic Information of AI Waifu

Item Description
Name AI Waifu

Website https://aiwaifu.gg/
Type Smart Contract

Language Solidity
Audit Method Whitebox

Latest Audit Report March 5, 2024

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

• https://github.com/aiwaifu-gg/waifu-contracts.git (0074ced)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/aiwaifu-gg/waifu-contracts.git (1b21c18)

4/20 PeckShield Audit Report #: 2024-070

Public

1.2 About PeckShield

PeckShield Inc. [10] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [9]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact, and can be accordingly classified
into four categories, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would

5/20 PeckShield Audit Report #: 2024-070

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/20 PeckShield Audit Report #: 2024-070

Public

additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [8], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/20 PeckShield Audit Report #: 2024-070

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/20 PeckShield Audit Report #: 2024-070

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the design and implementation of the AI Waifu

protocol smart contracts. During the first phase of our audit, we study the smart contract source code
and run our in-house static code analyzer through the codebase. The purpose here is to statically
identify known coding bugs, and then manually verify (reject or confirm) issues reported by our
tool. We further manually review business logics, examine system operations, and place DeFi-related
aspects under scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 3

Informational 0

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/20 PeckShield Audit Report #: 2024-070

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities and 3 low-severity vulnerabilities.

Table 2.1: Key Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved Validation on Protocol Param-

eters in WaifuToken
Coding Practices Resolved

PVE-002 Low Revisited Ownable Inheritance in Shop Business Logic Resolved
PVE-003 Low Redundant _taxProcessing() Handling

in WaifuToken
Coding Practices Resolved

PVE-004 Medium Confused Defender Account in GameM-
anager::tempt()

Business Logic Resolved

PVE-005 Medium Trust Issue Of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/20 PeckShield Audit Report #: 2024-070

Public

3 | Detailed Results

3.1 Improved Validation on Protocol Parameters in WaifuToken

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: WaifuToken, Shop

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The AI Waifu protocol is no exception. Specifically, if we examine the WaifuToken

contract, it has defined a number of protocol-wide risk parameters, such as projectBuyTaxBasisPoints
and projectSellTaxBasisPoints. In the following, we show the corresponding constructor routine that
initializes their values.

264 f unc t i on s e tP r o j e c tTaxRa t e s (
265 uint16 newProjectBuyTaxBas i sPoints_ ,
266 uint16 newPro j e c tSe l lTaxBa s i sPo i n t s_
267) ex te rna l on l yRo l e (DEFAULT_ADMIN_ROLE) {
268 uint16 o ldBuyTaxBas i sPo in t s = p ro j e c tBuyTaxBa s i sPo i n t s ;
269 uint16 o l d S e l l T a xBa s i s P o i n t s = p r o j e c t S e l l T a xB a s i s P o i n t s ;
270
271 p ro j e c tBuyTaxBa s i sPo i n t s = newPro jectBuyTaxBas i sPo ints_ ;
272 p r o j e c t S e l l T a xB a s i s P o i n t s = newPro j e c tSe l lTaxBa s i sPo i n t s_ ;
273
274 emit Pro j e c tTaxBas i sPo in t sChanged (
275 o ldBuyTaxBas i sPo in t s ,
276 newProjectBuyTaxBas i sPoints_ ,
277 o l d S e l l T a xBa s i sP o i n t s ,
278 newPro j e c tSe l lTaxBa s i sPo i n t s_
279) ;
280 }

Listing 3.1: WaifuToken::setProjectTaxRates()

11/20 PeckShield Audit Report #: 2024-070

Public

These parameters define various aspects of the protocol operation and maintenance and need to
exercise extra care when configuring or updating them. Our analysis shows the update logic on these
parameters can be improved by applying more rigorous sanity checks. Based on the current implemen-
tation, certain corner cases may lead to an undesirable consequence. For example, we can improve the
above setter by further enforcing the following requirements: require(newProjectBuyTaxBasisPoints_ <

BP_DENOM) and require(newProjectSellTaxBasisPoints_ < BP_DENOM). In addition, there is a need to set
tokenHasTax = false when newProjectBuyTaxBasisPoints==0 && newProjectSellTaxBasisPoints_==0.

Recommendation Validate any changes regarding these system-wide parameters to ensure
they fall in an appropriate range.

Status This issue has been fixed in the following commit: 1b21c18.

3.2 Revisited Ownable Inheritance in Shop

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Shop

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

In AI Waifu, there is a core Shop contract that implements the Uniswap-like DEX engine with the
support of ERC1155 standard tokens. While examining the Shop contract, we notice its inheritance
from Ownable that provides a basic access control mechanism, where a privileged account (i.e., owner)
can be granted exclusive access to specific functions. However, our analysis shows that there is no
function in Shop that has been defined to make use of this access control mechanism.

34 contract Shop is ReentrancyGuard , IShop , Ownable , ERC1155 , ERC1155Burnable {
35 // Variables
36 IERC1155 internal immutable token; // address of the ERC -1155 token contract
37 address internal immutable currency; // address of the ERC -20 currency used for

exchange
38 address internal immutable factory; // address for the factory that created this

contract
39
40 // Royalty variables
41 bool internal immutable IS_ERC2981; // whether token contract supports ERC -2981
42 ...
43 }

Listing 3.2: The Shop Contract

12/20 PeckShield Audit Report #: 2024-070

https://github.com/aiwaifu-gg/waifu-contracts/commit/1b21c18

Public

To elaborate, we show above the code snippet of this Shop contract. The Ownable inheritance is
unnecessary and can be safely removed. From another perspective, there is a possibility of making
use of the access control mechanism to uncover funds that may be accidentally sent to the contract.

Recommendation Revise the above contract to remove the Ownable inheritance.

Status This issue has been fixed in the following commit: 1b21c18.

3.3 Redundant _taxProcessing() Handling in WaifuToken

• ID: PVE-003

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: WaifuToken

• Category: Coding Practices [6]

• CWE subcategory: CWE-563 [3]

Description

The AI Waifu protocol makes good use of a number of reference contracts, such as ERC20Permit,
AccessControl, EnumerableSet, and SafeERC20, to facilitate its code implementation and organization.
For example, the WaifuToken smart contract has so far imported at least five reference contracts.
However, we observe the inclusion of certain unused code or the presence of unnecessary redundancies
that can be safely removed.

For example, if we examine closely the _taxProcessing() routine, it charges the buy/sell tax for the
buy/sell transactions. In particular, when it is a sell operation, the conditions of sLiquidityPool(to_)&&
totalSellTaxBasisPoints()> 0) (line 188) are met, which makes the following if (projectSellTaxBasisPoints

> 0) condition (line 189) unnecessary. A similar redundancy is also observed for the buy operation
(line 200).

176 function _taxProcessing(
177 bool applyTax_ ,
178 address to_ ,
179 address from_ ,
180 uint256 sentAmount_
181) internal returns (uint256 amountLessTax_) {
182 amountLessTax_ = sentAmount_;
183 unchecked {
184 if (_tokenHasTax && applyTax_) {
185 uint256 tax;
186
187 // on sell
188 if (isLiquidityPool(to_) && totalSellTaxBasisPoints () > 0) {
189 if (projectSellTaxBasisPoints > 0) {
190 uint256 projectTax = ((sentAmount_ *

13/20 PeckShield Audit Report #: 2024-070

https://github.com/aiwaifu-gg/waifu-contracts/commit/1b21c18

Public

191 projectSellTaxBasisPoints) / BP_DENOM);
192 projectTaxPendingSwap += uint128(projectTax);
193 tax += projectTax;
194 }
195 }
196 // on buy
197 else if (
198 isLiquidityPool(from_) && totalBuyTaxBasisPoints () > 0
199) {
200 if (projectBuyTaxBasisPoints > 0) {
201 uint256 projectTax = ((sentAmount_ *
202 projectBuyTaxBasisPoints) / BP_DENOM);
203 projectTaxPendingSwap += uint128(projectTax);
204 tax += projectTax;
205 }
206 }
207
208 if (tax > 0) {
209 _increaseBalance(address(this), tax);
210 emit Transfer(from_ , address(this), tax);
211 amountLessTax_ -= tax;
212 }
213 }
214 }
215 return (amountLessTax_);
216 }

Listing 3.3: WaifuToken::_taxProcessing()

Recommendation Consider the removal of the redundant state (or code) with a simplified,
consistent implementation.

Status This issue has been fixed in the following commit: 1b21c18.

3.4 Confused Defender Account in GameManager::tempt()

• ID: PVE-004

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: GameManager

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

In AI Waifu, there is another core GameManager contract that implements various interactions with
Waifus. There is a special type of interaction called tempt and our analysis shows its logic should be
revisited.

14/20 PeckShield Audit Report #: 2024-070

https://github.com/aiwaifu-gg/waifu-contracts/commit/1b21c18

Public

To elaborate, we show below the related tempt() routine. Notice that there are two roles in
it: Temptor and Resistor Waifu. Temptor is the one who tempts other Waifus and Waifus that are
being tempted are known as Resistor Waifu. Our analysis shows the defendAmount state should be
computed based on the waifuId owner (IERC721(waifuNft).ownerOf(waifuId)), not the account (msg.

sender). Otherwise, as long as the owner removes the isApprovedForAll flag, no temptation will be
successful.

334 function tempt(uint256 waifuId , uint256 wager) external isActive(waifuId) {
335 address account = _msgSender ();
336 require(
337 _cooldownByWaifu[waifuId] < block.timestamp ,
338 "Waifu is on cooldown"
339);
340 require(
341 _cooldownByAddress[account] < block.timestamp ,
342 "Account is on cooldown"
343);
344 IAIWaifu.Waifu memory waifu = IAIWaifu(waifuNft).waifu(waifuId);
345 ERC1155Burnable ingredientContract = ERC1155Burnable(ingredientNft);
346 uint256 temptIngredientId = temptMap[waifu.ingredientId];
347 require(
348 ingredientContract.balanceOf(account , temptIngredientId) >= wager ,
349 "Insufficient ingredient"
350);
351 uint256 temptId = _nextTemptId ++;
352 ingredientContract.burn(account , temptIngredientId , wager);

354 uint256 defendAmount = ingredientContract.isApprovedForAll(
355 account ,
356 address(this)
357)
358 ? ingredientContract.balanceOf(account , waifu.ingredientId)
359 : 0;
360 if (defendAmount > 0) {
361 ingredientContract.burn(
362 IERC721(waifuNft).ownerOf(waifuId),
363 waifu.ingredientId ,
364 Math.min(defendAmount , wager)
365);
366 }

368 _cooldownByWaifu[waifuId] = block.timestamp + defendCooldown;
369 _cooldownByAddress[account] = block.timestamp + temptCooldown;

371 emit Tempted(account , waifuId , temptId , wager , defendAmount);
372 }

Listing 3.4: GameManager::tempt()

Recommendation Revise the above logic to properly implement the temptation logic.

15/20 PeckShield Audit Report #: 2024-070

Public

Status This issue has been fixed in the following commit: b549e77.

3.5 Trust Issue of Admin Keys

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

In the AI Waifu protocol, there is a privileged account (with the DEFAULT_ADMIN_ROLE role) that plays a
critical role in governing and regulating the system-wide operations (e.g., configuring various param-
eters and managing pools). It also has the privilege to control or govern the flow of assets managed
by this protocol. Our analysis shows that the privileged account needs to be scrutinized. In the
following, we examine the privileged account and the related privileged accesses in current contracts.

82 function addLiquidityPool(
83 address newLiquidityPool_
84) public onlyRole(DEFAULT_ADMIN_ROLE) {
85 // Don’t allow calls that didn’t pass an address:
86 if (newLiquidityPool_ == address (0)) {
87 _revert(LiquidityPoolCannotBeAddressZero.selector);
88 }
89 // Only allow smart contract addresses to be added , as only these can be pools:
90 if (newLiquidityPool_.code.length == 0) {
91 _revert(LiquidityPoolMustBeAContractAddress.selector);
92 }
93 // Add this to the enumerated list:
94 _liquidityPools.add(newLiquidityPool_);
95 emit LiquidityPoolAdded(newLiquidityPool_);
96 }
97
98 function removeLiquidityPool(
99 address removedLiquidityPool_

100) external onlyRole(DEFAULT_ADMIN_ROLE) {
101 // Remove this from the enumerated list:
102 _liquidityPools.remove(removedLiquidityPool_);
103 emit LiquidityPoolRemoved(removedLiquidityPool_);
104 }
105 ...
106 function withdrawERC20(
107 address token_ ,
108 uint256 amount_
109) external onlyRole(DEFAULT_ADMIN_ROLE) {
110 if (token_ == address(this)) {

16/20 PeckShield Audit Report #: 2024-070

https://github.com/aiwaifu-gg/waifu-contracts/commit/b549e77

Public

111 _revert(CannotWithdrawThisToken.selector);
112 }
113 IERC20(token_).safeTransfer(_msgSender (), amount_);
114 }
115 ...
116 function setProjectTaxRecipient(
117 address projectTaxRecipient_
118) external onlyRole(DEFAULT_ADMIN_ROLE) {
119 projectTaxRecipient = projectTaxRecipient_;
120 emit ProjectTaxRecipientUpdated(projectTaxRecipient_);
121 }
122
123 function setProjectTaxRates(
124 uint16 newProjectBuyTaxBasisPoints_ ,
125 uint16 newProjectSellTaxBasisPoints_
126) external onlyRole(DEFAULT_ADMIN_ROLE) {
127 uint16 oldBuyTaxBasisPoints = projectBuyTaxBasisPoints;
128 uint16 oldSellTaxBasisPoints = projectSellTaxBasisPoints;
129
130 projectBuyTaxBasisPoints = newProjectBuyTaxBasisPoints_;
131 projectSellTaxBasisPoints = newProjectSellTaxBasisPoints_;
132
133 emit ProjectTaxBasisPointsChanged(
134 oldBuyTaxBasisPoints ,
135 newProjectBuyTaxBasisPoints_ ,
136 oldSellTaxBasisPoints ,
137 newProjectSellTaxBasisPoints_
138);
139 }

Listing 3.5: Example Privileged Functions in WaifuToken

Note that if the privileged owner account is a plain EOA account, this may be worrisome and pose
counter-party risk to the exchange users. A multi-sig account could greatly alleviate this concern,
though it is still far from perfect. Specifically, a better approach is to eliminate the administration key
concern by transferring the role to a community-governed DAO. In the meantime, a timelock-based
mechanism can also be considered as mitigation.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been mitigated as the team makes use of a multisig to act as the privileged
owner.

17/20 PeckShield Audit Report #: 2024-070

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the AI Waifu protocol, which is
designed to be a Waifu companion game. The players get to discover their Waifu backstory, unlock
NSFW content, flirt with other Waifus (PvP), and protect your Waifu through strategic resources, as well
as claim rewards for $WAIFU tokens. The current code base is well structured and neatly organized.
Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

18/20 PeckShield Audit Report #: 2024-070

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[9] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

19/20 PeckShield Audit Report #: 2024-070

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Public

[10] PeckShield. PeckShield Inc. https://www.peckshield.com.

20/20 PeckShield Audit Report #: 2024-070

https://www.peckshield.com

	Introduction
	About AI Waifu
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Validation on Protocol Parameters in WaifuToken
	Revisited Ownable Inheritance in Shop
	Redundant _taxProcessing() Handling in WaifuToken
	Confused Defender Account in GameManager::tempt()
	Trust Issue of Admin Keys

	Conclusion
	References

