n Qua ntStamp Security Assessment Certificate

April 14th 2022 — Quantstamp Verified

Hike - Rush Gaming

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summarg

Type

Auditors

Timeline
EVM
Languages

Methods

Specification
Documentation Quality
Test Quality

Source Code

Total Issues
High Risk Issues
Medium Risk Issues

Low Risk Issues

Informational Risk Issues

Undetermined Risk Issues

Wallet and NFT contract

Souhail Mssassi, Research Engineer
Philippe Dumonet, Senior Research Engineer
Marius Guggenmos, Senior Research Engineer

2022-03-07 through 2022-03-14
Berlin
Solidity

Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Hike Documentation

Medium
Medium
Repository Commit
smartcontracts ded4678
smartcontracts 61cf850
23 (21 Resolved)
1 (1 Resolved)
3 (3 Resolved) 0 Unresolved
11 (10 Resolved) 2 Acknowledged
21 Resolved

7 (6 Resolved)

1 (1 Resolved)

A High Risk

~ Medium Risk

Low Risk

Informational

? Undetermined

© Unresolved

Acknowledged

Resolved

° Mitigated

The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

The impact of the issue is uncertain.

Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/hike/smartcontracts/blob/main/README.md
https://github.com/hike/smartcontracts
https://github.com/hike/smartcontracts/commit/ded4678e328f9665f41d513d144bc4f6e4ac40b1
https://github.com/hike/smartcontracts
https://github.com/hike/smartcontracts/commit/61cf85053e5bd41539ef7f573a616732980d628b

Summary of Findings

Initial audit:

Through reviewing the code, we found 23 potential issues of various levels of severity:1 high-severity, 3 medium-severity, 11 low-severity, 7 informational-severity and 1 undetermined

issues. We recommend addressing all the issues before deploying the code.
After reaudit:
Quantstamp has checked the commit hash 61c£850 and has determined that all the reported issues have been resolved (that is, either fixed or acknowledged) by the team. More details

regarding each of the issues are provided in the update messages below each issue recommendation.

QSP-1
QSP-2
QSP-3
QSP-4
QSP-5
QSP-6
QSP-7
QSP-8
QSP-9
QSP-10
QSP-11
QSP-12
QSP-13
QSP-14
QSP-15
QSP-16
QSP-17
QSP-18
QSP-19
QSP-20
QSP-21
QSP-22
QSP-23

Description Severity
Owner Has Excessive Privileges Over RushToken A High
Locked ETH In The Vesting Contract ~ Medium
Any User Can Release Tokens

_totalTokensToBeUnlocked And unlockedIndexes Not Updated Upon Removing Vesting Party A Medium
ContractTokenUnlockManager: Owner Can Remove / Add Vested Parties Or Drain Contract At Any Time A Medium

Owner Can Add Beneficiary Multiple Times

Lack Of Events For Critical State Changes

Incorrect Result In The Unlocked Tokens

Missing Input Verification

Missing Address Validation

Incompatibility With Deflationary Tokens

For Loop Over Dynamic Array

Owner Can Renounce Ownership

Floating Pragma

Using transfer To Send Ether Might Revert

Approve Race

getBeneficiaries May Run Out Of Gas

Duplication Of Access Control Logic

Token ID Not Human Legible In Revert String

Comments Left In the Code

Replace Custom Linked List Implementation With Library
Multi Recipient ERC1155 Transfer Method May Not Work

Rush1155Token: Potential Proxy Implementation Not Initializable ? Undetermined

Status

Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Acknowledged
Fixed
Fixed
Fixed
Fixed
Fixed
Acknowledged
Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

 Transaction-ordering dependence

« Timestamp dependence

« Mishandled exceptions and call stack limits

« Unsafe external calls

* Integer overflow / underflow

« Number rounding errors

« Reentrancy and cross-function vulnerabilities
* Denial of service / logical oversights

* Access control

« Centralization of power

 Business logic contradicting the specification
« Code clones, functionality duplication

« Gas usage

* Arbitrary token minting

Methodology
The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.
i. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp

describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the

established industry and academic practices, recommendations, and research.
4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.
Toolset
The notes below outline the setup and steps performed in the process of this audit.
Setup
Tool Setup:

e Slither v0.8.1

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

Findings

QSP-1 Owner Has Excessive Privileges Over RushToken

Severity: High Risk
Status: Fixed

File(s) affected: RushToken.sol

Description: The owner address of the contract can specify a _trustedForwarder address which can imitate any address allowing the "trusted forwarder" to execute any transaction such
as token transfers on behalf of users or even transferring ownership over the contract itself. Beyond updating the "trusted forwarder" which can imitate any address the owner address can also
update the contract logic, meaning they could increase or even unlock the mint cap and even remove user's tokens. Use of an upgradeable proxy comes at the large cost of reducing
trustlessness and most likely security.

Recommendation:

* Prevent the forwarder from being updated at all, have it set to an immutable value in the constructor or instantiate a fresh Minimal Forwarder contract in the

constructor and store it

» Evaluate whether upgradeability of the overall contract logic is necessary

Update: The team has fixed the issue of the trusted forwarder based on our recommendation. Only the owner / upgradeability part of the issue remains unfixed knowing that the upgradeability
of the ERC20 contract is a business requirement.

https://github.com/crytic/slither

QSP-2 Locked ETH In The Vesting Contract

Severity: Medium Risk

Status: Fixed

File(s) affected: VestingWallet.sol

Description: The contract level comment in VestingWal L et states this contract handles the vesting of ETH and ERC20 tokens for a given beneficiary. Accordingly, it contains a payable receive
function to accept ether. The rel ease function, however, is only able to handle ERC20 tokens and thus any ether sent to this contract will end up locked.

Recommendation:

1. Add support for vesting and releasing ether. OR

2. Remove the payable receive function to no longer accept ether.

Update: The team has fixed the issue by removing the receive function.

QSP-3 Any User Can Release Tokens

Status: Fixed

File(s) affected: VestingWallet.sol

Description: The rel ease method allows any address to call it, but the documenting README . md file states: "Only an admin can add an unlock config to the contract for any beneficiary and
release unlocked tokens to beneficiary”.

Recommendation: Ensure that only the owner can call the rel ease method or clarify that any party should be able to trigger a release in the documentation.

Update: The team updated their documentation to reflect that anyone can release vested tokens.

QSP-4 totalTokensToBeUnlocked AnNd _untockedIndexes Not Updated Upon Removing Vesting Party

Severity: Medium Risk

Status: Fixed

File(s) affected: ContractTokenUnlockManager. sol

Description: When a vesting account is removed from the contract by deleting its config via the removeLockedAmountConfig method, certain variables are not updated. Specifically, the
_unlockedIndexes of the account is not reset and _totalTokensToBeUnlocked is not decreased by the amount that was not yet released by the account. This has two significant

consequences:.

1. If the account gets added again, it would not be able to release tokens before the previous unlocked index

2. due to _totalTokensToBeUnlocked not being reduced, certain tokens would permanently be stuck in the contract upon removal.

Recommendation: Have _unlockedIndexes of the beneficiary be reset via delete _unlockedIndexes[beneficiary] andreduce _tokenTokensToBeUnlocked by the amount the
beneficiary has not yet claimed. This can be queried via the existing getTokensToBeUnlocked method.

Update: The team has removed the functionality of deleting vesting accounts.

QSP-5 contractTokenUnlockManager: Owner Can Remove / Add Vested Parties Or Drain Contract At Any Time

Severity: Medium Risk

Status: Fixed

File(s) affected: ContractTokenUnlockManager.sol

Description: The owner address of the ContractTokenUnlockManager contract can at any time remove vested parties. Tokens that would already be subject to release are not released to
the beneficiary upon removal. This may be problematic as beneficiaries have no guarantees within the contract whether they will be able to get tokens that were allocated to them. The owner

could also at any time create a new vesting schedule that allows them to withdraw any remaining tokens in the contract.

Recommendation: Limit the owner addresses's ability to remove vested parties: either by removing the ability to remove vested parties altogether or by having removal require the consent of the
beneficiary.

Update: The team has fixed the issue and now the beneficiaries can no longer be removed.

QSP-6 Owner Can Add Beneficiary Multiple Times

Status: Fixed

File(s) affected: ContractTokenUnlockManager. sol

Description: The ContractTokenUnlockManager keeps track of all the list of beneficiaries of the contract via a counter _beneficiaryCount and a linked list of beneficiaries
_beneficiaries. However, nothing prevents the owner address from calling addLockedAmountConfig twice for the same beneficiary and creating a loop in the list of beneficiaries. There is
a check whether the isAdded flag of a beneficiary has been set to true but it doesn't have to be set by the caller.

Recommendation: Ensure that the isAdded flag is set to true in the addLockedAmountConfig method.

Update: The team has fixed the issue by tracking the beneficiaries via EnumerableSet.AddressSet of OpenZeppelin and duplicate entries are no longer possible.

QSP-7 Lack Of Events For Critical State Changes

Status: Fixed

File(s) affected: RushToken. sol, ContractSpenderManager.sol
Description:

* RushToken does not emit an event when the “trusted forwarder” is changed. It is good practice to emit events on critical state changes, as it allows simpler tracking

of these changes off-chain.

» ContractSpenderManager does not emit any events when adding or removing spenders.

Exploit Scenario: The team has fixed the issue by adding the necessary events.
Recommendation:

« contracts/RushToken.sol: Add an event for when the “trusted forwarder” changes and have it be emitted in the setTrustedForwarder method.

« contracts/ContractSpenderManager.sol: Add an event for when the “spender” changes.

Update: The team has resolved the issue by adding the necessary events.

QSP-8 Incorrect Result In The Unlocked Tokens

Status: Fixed

File(s) affected: ContractTokenUnlockManager. sol

Description: In the two parameter version of the getTokensToBeUnlocked method (L59-62) the currentIndex is set as @. This means that the method returns all the tokens that would be

claimable at the specified timestamp if the user hasn't claimed anything. However, certain tokens may already be released leading to the result being inaccurate.

Recommendation: Use the _unlockedIndexes map to get the current index for the address being queried. Alternatively if including released tokens in the total is desired, this fact should be

explicitly documented as the name of the method may be misleading.

Update: The function was renamed to getTokensVestingSchedule to clear up the confusion.

QSP-9 Missing Input Verification

Status: Fixed

File(s) affected: VestingWallet.sol

Description: The _start timestamp may be in the past upon contract deployment. This can lead to the beneficiary being able to directly access any tokens entrusted to the contract.
(VestingWallet.sol [L30])

Recommendation: Consider validating the _start variable and comparing it with the current time using block . timestamp.

Update: The team has fixed the issue by verifying the _start variable

QSP-10 Missing Address Validation

Status: Fixed

File(s) affected: CustodialWallet.sol, RushToken.sol

Description: Certain functions lack a safety check in the address. The address-type argument should include a zero-address test. Otherwise, the contract's functionality may become

inaccessible.

» CustodialWallet.withdrawMoneyTo(_to) (L4k4);

« CustodialWallet.withdrawMoneyTo(_to) (L52);

Recommendation: It's recommended to further validate certain parameters, such as addresses. The concerns can be resolved by utilizing a whitelist technique or a modifier.

Update: The team has fixed the issue by adding the verification for address O.

QSP-11 Incompatibility With Deflationary Tokens

Status: Fixed

File(s) affected: ContractUnlockTokenManager. sol

Description: In the rel ease function (L51), when transferring standard ERC20 deflationary tokens, the input amount may not be equal to the received amount due to the charged (and

burned) transaction fee. As a result, this may not meet the assumption behind these low-level asset-transferring routines and will bring unexpected balance inconsistencies.
Recommendation: Add necessary mitigation mechanisms to keep track of accurate balances. One possibility is to query the balance before and after the transfer to compute the actual delta.

Update: The team has fixed the issue by calculating the difference between bal anceOf before and after the transfer to the account.

QSP-12 For Loop Over Dynamic Array

Status: Fixed

File(s) affected: ContractTokenUnlockManager.sol, CustodialWalletFactory.sol

Description: When smart contracts are deployed or their associated functions are invoked, the execution of these operations always consumes a certain quantity of gas, according to the
amount of computation required to accomplish them. Modifying an unknown-size array that grows in size over time can result in a Denial of Service attack. Simply by having an excessively huge

array, users can exceed the gas limit, therefore preventing the transaction from ever succeeding.

« ContractTokenUnlockManager.getTokensToBeUnlocked (L68);

Recommendation: Avoid actions that involve looping across the entire data structure. If you really must loop over an array of unknown size, arrange for it to consume many blocks and thus

multiple transactions.

Update: The team has fixed this issue by limiting the size of the array to be less than MAXIMUM_LOCKED _AMOUNTS.

QSP-13 Owner Can Renounce Ownership

Status: Fixed

File(s) affected: ContractSpenderManager. sol, ContractUnlockTokenManager. sol, CustodialWalletFactory.sol

Description: Several contracts implement OpenZeppelin's Ownabl e, which by default provides the function renounceOwnership to relinquish the ownership of the contract. In case it is never

planned that the contracts should be without an owner, we recommend overwriting this function to avoid accidentally leaving the contracts without an owner.
Recommendation: Consider whether renouncing the ownership is a valid use case and disable the functionality by overwriting renounceOwnership in case it is not.

Update: The team has fixed the issue by overriding the renounceOwnership function to always make it revert.

QSP-14 Floating Pragma

Status: Fixed

File(s) affected: ContractSpendable.sol, ContractSpenderManager.sol, ContractUnlockTokenManager.sol, CustodialWallet.sol, CustodialWalletFactory.sol,
NFTToken.sol, RushToken.sol, VestingWallet.sol

Description: The contract makes use of the floating-point pragma *0.8.7. Contracts should be deployed using the same compiler version and flags that were used during the testing process.
Locking the pragma helps to ensure that contracts are not unintentionally deployed using another compiler version, such as an obsolete version, that may introduce issues in the contract
system.

Recommendation: Consider locking the pragma version. It is advised that floating pragma not be used in production. Both truffle-config.js and hardhat.config.js support locking the pragma
version.

Update: The team has fixed the issue by specifying a single solidity version.

QSP-15 Using transter To Send Ether Might Revert

Status: Fixed

File(s) affected: CustodialWallet.sol
Description: Usage of address.transfer is discouraged since it only sends 2300 gas and might revert for some fallback functions. Refer to SWC-134 for details.
Recommendation: Replace transfer with a low-level call.

Update: The team now uses Address.sendValue instead of the transfer function.

QSP-16 Approve Race

Status: Acknowledged

File(s) affected: RushToken. sol

Description: The standard ERC20 implementation contains a widely-known race condition in its approve function, wherein a spender is able to witness the token owner broadcast a transaction
altering their approval and quickly sign and broadcast a transaction using transferFrom to move the current approved amount from the owner’s balance to the spender. If the spender’s

transaction is validated before the owner’s, the spender will be able to get both approval amounts of both transactions.
Recommendation: Use increaseAl lowance and decreaseAl Lowance functions to modify the approval amount instead of using the approve function to modify it.

Update: The team noted that they will ensure the safer increaseAl lowance and decreaseAl lowanse wil be used.

QSP-17 getBeneficiaries May Run Out Of Gas

Status: Fixed

File(s) affected: ContractTokenUnlockManager. sol
Description: The getBeneficiaries method may run out of gas if the linked list of beneficiaries is very long.

Recommendation: It is recommended to supply a version of the getBeneficiaries method where the caller can specify a number of maximum iterations and a version where the caller can

https://swcregistry.io/docs/SWC-134

specify a continuation index and beneficiary so that the list of beneficiaries can be queried in batches effectively.

Update: The team has fixed the issue by limiting the size of the array.

QSP-18 Duplication Of Access Control Logic

Status: Fixed

File(s) affected: ContractSpenderManager. sol

Description: The ContractSpenderManager implements its logic to track a set of addresses, so-called “spenders”. However, very similar logic is already available via the AccessControl
contract from the OpenZeppelin library. Unless there are specific reasons for the re-implementation, a library should always be used for as much of a project's logic as possible.

Recommendation: The ContractSpenderManager's logic should be replaced with the inheritance from AccessControl and configuration of a basic “spender” role. A similar isSpender

method can be implemented to allow easy querying whether a specific address has the spender role.

Update: The team has fixed the issue by using the AccessControl Enumrable library.

QSP-19 Token ID Not Human Legible In Revert String

Status: Fixed

File(s) affected: NFTChildToken. sol

Description: The revert string in Lt5 combines the main error message with the token ID that is being checked. However simply packing a uint256 value with abi.encodePacked will lead to
the resulting string containing a 0-byte padded 32 character string added to it with the individual bytes of the token ID interpreted as characters.

Recommendation: To make the token ID not be padded and human legible it is recommended to use OpenZeppelin's Strings.toString helper function which converts a uint256 value to its
legible string representation. This value can then be packed together with the start error message. Due to the abi.encodePacked and Strings.toString methods using a significant
amount of gas it is further recommended that the require invocation be transformed toan if (condition) revert(packedErrorMessage); structure to ensure that the formatting
and packing is only done when required. Strings.toHexString can be used if a hexadecimal representation of the token ID is preferred.

Update: The team has fixed the issue and the token_id is no longer part of the require message.

QSP-20 Comments Left In the Code

Status: Fixed

File(s) affected: ContractUnlockTokenManager. sol

Description: The getTokensToBeUnlocked function, located in the ContractUnlockTokenManager contract, contains code that is completely commented out--see L60. This is currently
dead code.

Recommendation: Remove the commented out code as it has no purpose.

Update: The team has removed the comments.

QSP-21 Replace Custom Linked List Implementation With Library

Status: Fixed

File(s) affected: ContractTokenUnlockManager.sol

Description: The ContractTokenUnlockManager currently implements its own linked list mechanism using a mapping to track the beneficiaries. While the implementation appears to be
correct, the code would be significantly easier to understand and provide a cleaner API (e.g. removeLockedAmountCon£fig) if it were to be replaced by OpenZeppelin's EnumerableSet.

Recommendation: Replace the custom linked list implementation with OpenZeppelin's EnumerableSet .AddressSet.

Update: The custom linked list implementation has been replaced with OZ's EnumberableSet . AddressSet.

QSP-22 Multi Recipient ERC1155 Transfer Method May Not Work

Status: Acknowledged

File(s) affected: contracts/CompanyCustodialWallet.sol

Description: The safeBatchTransferMultipleRecipients method calls the safeBatchTransferFrom method for every recipient in its recipients array. It does so attempting to
transfer the same list of token IDs and amounts. However, this method will fail if the wallet contract does not own at least amounts[1i] * recipients.length tokens of ids[1i].

Recommendation: If it is intended for this method to repeatedly send the same set of tokens to all recipients this should be documented. Furthermore, balance checks should be added similar to
the other methods.
However, if the safeBatchTransferMultipleRecipients method is intended to send different sets and amounts of tokens to different recipients then the method should be modified to

accept multiple arrays of IDs and amounts.

Update: This behavior is now documented. Furthermore, no balance checks have been added, since the team argues that the additional gas required for them is too high.

QSP-23 rushi1155Token: Potential Proxy Implementation Not Initializable

Severity: Undetermined

https://docs.openzeppelin.com/contracts/3.x/api/utils#EnumerableSet

Status: Fixed

File(s) affected: contracts/Rush1155Token. sol

Description: The Rush1155Token contract inherits from the Initializable contract, implying that it is meant to be a post-constructor initializable contract (as is required by proxy

implementations), however no methods or modifiers from the Initializable library are used, and a constructor is expected to be used for initialization of the ERC1155 logic.

Recommendation: If it was intended for the Rush1155Token contract to be initialized post-construction the required initialization method should be implemented. If it is not intended to be used

as proxy implementation the Initializable library should not be referenced in the contract.

Update: The team did not intend for the contract to be a proxy and has removed the unnecessary import.

Automated Analyses

Slither

Slither reported the following :

*Minimal Forwarder.execute(Minimal Forwarder.ForwardRequest,bytes) (@openzeppelin/contracts/metatx/MinimalForwarder.sol#42-58) sends eth to arbitrary user
* ERC1967UpgradeUpgradeable._functionDelegateCall(address,bytes) (@openzeppelin/contracts-upgradeable/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#208-214) uses delegatecall to a input-controlled function id

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#controlled-delegatecall
, which we classified as false positives.

- (success,returndata) = target.delegatecall(data) (@openzeppelin/contracts-upgradeable/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#212)

Adherence to Specification

1.The release method allows any address to call it, but the documenting README . md file states: "Only an admin can add an unlock config to the contract for any

beneficiary and release unlocked tokens to beneficiary".

Code Documentation

* The comment in VestingWallet. sol states that the "default implementation is a linear vesting curve" when in reality it is a vesting cliff that releases all tokens at

once after the lock period has passed.

» contracts/ContractTokenUnlockManager.sol does not contain a single comment as to what it does or how it works. It is also not mentioned at all in the README
file.

Adherence to Best Practices

10.

1.

12.

General project settings: Lack of optimizer. It is recommended the solidity optimizer be enabled for the final compilation of contracts prior to deployment. [Unresolved]

General project settings: Lack of linter and fixer. It is recommended that a linter such as solhint be used to ensure that files are consistently formatted. Solidity code

can be automatically formatted using the help of the prettier-plugin-solidity package, for example. [Unresolved]

contracts/CustodialWalletFactory.sol: Implicit visibility. The beacon and spenderManager properties do not have an explicit visibility. It is recommended their

visibility whether internal / private / public be defined explicitly for the sake of transparency and clarity. [Fixed]

Use of OpenZeppelin Counter for simple counter. While there's nothing fundamentally wrong with using OpenZeppelin's Counter, it isn't very efficient. Making Counter
variables into simple uint256 variables and incrementing them in an unchecked context will save gas. Files where Counter is used :
contracts/CustodialWalletFactory.sol (L22), contracts/NFTToken.sol (L14) [fixed]

contracts/CustodialWalletFactory.sol: Batching method createWalletBatch (L42-47) could be optimized. While simply calling createWallet multiple times
reduces complexity, the batching of wallet creation could be made more efficient. By bringing the wallet creation logic into the createWalletBatch the walletId
variable only needs to be written once at the end of the loop. Furthermore, the constructor data abi.encodeWithSelector(CustodialWallet.initialize.selector,
spenderManager) only needs to be encoded once and could then be reused. Another advantage is that the onlyTransactor modifier only needs to run once for the

createWalletBatch method, instead of being repeatedly run for every iteration of the for-loop. [Fixed]

contracts/TransactorControl.sol: L10: Use of deprecated _setupRole method. According to OpenZeppelin's documentation, the setupRole method is deprecated
in favor of _grantRole (source).[Fixed]

contracts/NFTChildToken. sol: L61: encodeTokenMetadata method defined as external despite being used internally. If an external / public method needs to be called

from within the contract defining it it should be defined as public in order to save gas. [Mitigated]

contracts/RushToken.sol: L35-49: The forwarder accepting _msgSender and _msgData methods are reimplemented instead of being inherited from the
ERC2771Context contract provided by OpenZeppelin which contains identical methods. [Unresolved]

contracts/VestingWallet.sol:L21-22, L27, L29-30, L74-75, L82-83: Use of integer types smaller than 256 bits. No storage packing is being leveraged here meaning
the use of integer types which are smaller than 256 bits such as uint64 will only lead to more gas being used overall. It is recommended that the use of uinté4 be
replaced with uint256 throughout the contract. [Fixed]

contracts/ContractTokenUnlockManager.sol: Implicit library import. While OpenZeppelin's Address library is indirectly brought into the context of the file via the

import of SafeERC20 it is recommended that library imports be more explicit by adding an import statement. [Fixed]

contracts/ContractTokenUnlockManager. sol: Private method names getTokensToBeUnlocked and isLockedAmountConfigValid do not follow naming convention.
They are defined as having private visibility (L64 , L96) but they don't have a leading underscore. It is recommended to keep naming conventions consistent

throughout a project. The getTokensToBeUnlocked and isLockedAmountConfigValid methods should either be made public or a leading underscore should be added.
[Fixed]

contracts/ContractTokenUnlockManager.sol: L96-113: Optimization possible. The output of the isLockedAmountConfigValid method is fal se whenever either
isAmountValid or isUnlockScheduleValid become false due to the final logical and (L112). Instead of storing these states in two variables, the method can directly
return false instead of first setting them to fal se. The method would return true if it reaches the end. Furthermore, the repeated idx > 0 check (L105) can be removed
if the for-loop runs for LockedAmounts.length - 1 iterations, one additional LockedAmounts[idx].amount == @ check would have to be added. With another small

optimization. [Fixed] The method body would look something like this:

uint256 lastIndex = lockedAmounts.length - 1;

for (uint256 idx = 0; idx < lastIndex;) {
if (lLockedAmounts[idx].amount == @) {

return false;

https://docs.openzeppelin.com/contracts/4.x/api/access#AccessControl-_setupRole-bytes32-address-

13.

4.
19.
16.

17.

18.

}// unchecked block to reduce '++idx’ gas usage
unchecked {
if (lockedAmounts[idx].unlockTime > lockedAmounts[++idx].unlockTime) {

return false;

by
by

if (lLockedAmounts[lastIndex].amount == @) return false;

return true;

Event names should start with a capital letter. See contracts/ContractTokenUnlockManager.sol events unlockTokenConfigAdded and unlockTokenConfigRemoved.
[Fixed]

Use immutable for _distributionToken in contracts/ContractTokenUnlockManager.sol since it is only changed in the constructor. [Fixed]
Declare _distributionToken as IERC20 to avoid having to cast it on every use in contracts/ContractTokenUnlockManager. sol. [Fixed]

contracts/CompanyCustodialWallet.sol: Repeated checks in sub-calls. The safeBatchTransferMultipleRecipients and batchTransferERC20 methods
repeatedly trigger other calls in their for-loops. These methods repeat checks such as onlySpender or Address.isContract checks already checked by the parent
method. Batch calling methods should refrain from calling high-level methods and instead call “lower level” methods such as the token transfer methods directly so that

unused checks can be omitted. [Unresolved]

contracts/NFTRootToken.sol: Unnecessary use of bytes parameters. The mint(uint256,uint256,bytes) and setTokenMetadata methods both accept a bytes
parameter, only for it to later be converted to a string. Due to their being no difference in how solidity treats bytes and string types, it is recommended that string

be directly used. [Unresolved]

contracts/WalletExecutor.sol: L10-12: Reimplementation of library logic. The highlighted lines can be replaced with a call to OpenZeppelin's

Address.functionCall as it implements the same checks and calls. [Fixed]

Test Results

Test Suite Results

npx truffle test

Contract: ContractUnlockTokenManager

Contract: CompanyCustodialWallet

Contract: ContractSpenderManager

Contract: CustodialWalletFactory

Contract: CustodialWallet

Deploying TokenUnlockManager

v Invalid distribution token (523ms)
Adding Locked Amount Configs

Vv rejects zero address for beneficiary (189ms)
rejects invalid locked amount config with zero amount (257ms)
rejects invalid locked amount config with wrong unlock time (220ms)
add valid locked amount config (282ms)
add config from non owner (200ms)
adding valid locked amount config (855ms)

Vv rejects already added beneficiary (194ms)
Release Tokens

Vv rejects zero address for beneficiary (164ms)

Vv transferring tokens to a beneficiary who is not added yet (189ms)

Vv Release tokens for added beneficiary by owner (1869ms)
Removing Locked Amount Configs

Vv rejects zero address for beneficiary (160ms)

Vv rejects non existent beneficiary (176ms)
v remove config from non owner (209ms)
v
.\/

L L L L <L

previous beneficiary not pointing to correct beneficiary (195ms)
remove locked amount config (325ms)

batch transfer ERC20
v ERC20 batch transfer using non spender (240ms)
ERC20 batch transfer invalid contract address (208ms)
ERC20 batch transfer no recipients (172ms)
ERC20 batch transfer no amounts (267ms)
ERC20 batch transfer difference in recipients and amounts (204ms)
ERC20 batch transfer insufficient balance (205ms)
v ERC20 batch transfer via valid spender (577ms)
batch transfer ERC1155 from
v ERC1155 batch transfer using non spender (282ms)
v ERC1155 batch transfer invalid contract address (220ms)
v ERC1155 batch transfer no ids (267ms)
v ERC1155 batch transfer no amounts (254ms)
v ERC1155 batch transfer using valid spender (522ms)
batch transfer ERC1155 multiple recipients
v ERC1155 batch transfer using non spender (391ms)
ERC1155 batch transfer invalid contract address (254ms)
ERC1155 batch transfer no ids (194ms)
ERC1155 batch transfer no amounts (192ms)
ERC1155 batch transfer no recipients (242ms)
ERC1155 batch transfer using valid spender (1023ms)

L L L L <L

L L L L <L

Add spender
v Not able to add spender account from non-owner (209ms)
v Not able to add non-valid address (194ms)
v Able to add spender account from owner (288ms)
Remove spender
v Not able to remove spender account from non-owner (227ms)
v Able to remove spender account from owner (239ms)

Getting beacon address from factory
v Non owner should not be allowed (74ms)
v Valid address for beacon (77ms)
deploy invalid config
v Invalid initial implementation (268ms)
v Invalid spender implementation (267ms)
v Invalid nft token implementation (345ms)
Create wallet
v Wallet id should start from © (46ms)
Vv Get current implementation (76ms)
Vv Create wallet from non-owner (142ms)
Vv Create wallet from owner (531ms)
Create wallet in batch
Vv Create wallet in batch from non-transactor (217ms)
Vv Create wallet with zero size batch (184ms)
Vv Create wallet in batch using transactor (2014ms)
Create wallet and mint nft in batch
Vv Create wallet and mint nft in batch from non-transactor (201ms)
Vv Create wallet with zero size batch (235ms)
Vv Create wallet and mint nft in batch using transactor (4011ms)
Update Wallet Implementation
Vv Update invalid implementation (184ms)
Vv Update implementation from a non owner (203ms)
Vv Update implementation from owner (976ms)

Initializing custodial wallet
v Cannot be initialized with invalid contractSpender (368ms)
Native currency
Vv balance should be @ by default (50ms)
Vv able to send to contract (174ms)
v non spender shouldn't be able to withdraw money (257ms)
Vv spender shouldn't be able to withdraw more than balance (433ms)
Vv spender should be able to withdraw money (446ms)
ERC20
v mint ERC20 (396ms)
v withDraw ERC20 using non-spender (201ms)
v withDraw invalid ERC20 using spender (181ms)
v withDraw ERC20 more than balance using spender (222ms)
v withDraw ERC20 using spender (639ms)
ERC721

mint ERC721 (459ms)
withDraw ERC721 using non-spender (476ms)
withDraw invalid ERC721 using spender (408ms)
withDraw ERC721 from a non owner using spender (449ms)
v withDraw ERC721 from a owner using spender (690ms)
ERC1155
Vv balance should be 0 by default (93ms)
able to send to contract (328ms)
non spender shouldn't be able to withdraw money (353ms)
token should be a valid address (388ms)
spender shouldn't be able to withdraw more than balance (474ms)
spender should be able to withdraw tokens (588ms)

L L L <L

L L L L <L

Contract: ERC1155
Like an ERC1155
balanceOf
Vv reverts when queried about the zero address (60ms)
when accounts don't own tokens
Vv returns zero for given addresses (193ms)
when accounts own some tokens
v returns the amount of tokens owned by the given addresses (189ms)
balanceOfBatch
Vv reverts when input arrays don't match up (157ms)
Vv reverts when one of the addresses is the zero address (92ms)
when accounts don't own tokens
Vv returns zeros for each account (97ms)
when accounts own some tokens
Vv returns amounts owned by each account in order passed (78ms)
v returns multiple times the balance of the same address when asked (95ms)
setApprovalForAll
Vv sets approval status which can be queried via isApprovedForAll (46ms)
Vv emits an ApprovalForAll log
Vv can unset approval for an operator (222ms)
Vv reverts if attempting to approve self as an operator (236ms)
safeTransferFrom
Vv reverts when transferring more than balance (237ms)
Vv reverts when transferring to zero address (200ms)
when called by the multiTokenHolder
Vv debits transferred balance from sender (63ms)
VvV credits transferred balance to receiver
Vv emits a TransferSingle log
VvV preserves existing balances which are not transferred by multiTokenHolder (14@ms)
when called by an operator on behalf of the multiTokenHolder
when operator is not approved by multiTokenHolder
v reverts (192ms)
when operator is approved by multiTokenHolder
Vv debits transferred balance from sender (61ms)
VvV credits transferred balance to receiver (75ms)
Vv emits a TransferSingle log
VvV preserves operator's balances not involved in the transfer (110ms)
when sending to a valid receiver
without data
Vv debits transferred balance from sender (94ms)
VvV credits transferred balance to receiver (74ms)
Vv emits a TransferSingle log
Vv calls onERC1155Received
with data
Vv debits transferred balance from sender (76ms)
Vv credits transferred balance to receiver (91ms)
v emits a TransferSingle log
v calls onERC1155Received
to a receiver contract returning unexpected value
Vv reverts (319ms)
to a receiver contract that reverts
Vv reverts (335ms)
to a contract that does not implement the required function
Vv reverts (395ms)
safeBatchTransferFrom
Vv reverts when transferring amount more than any of balances (282ms)
Vv reverts when ids array length doesn't match amounts array length (424ms)
Vv reverts when transferring to zero address (186ms)
when called by the multiTokenHolder
VvV debits transferred balances from sender (60ms)
VvV credits transferred balances to receiver (75ms)
v emits a TransferBatch log
when called by an operator on behalf of the multiTokenHolder
when operator is not approved by multiTokenHolder
Vv reverts (202ms)
when operator is approved by multiTokenHolder
Vv debits transferred balances from sender (92ms)
Vv credits transferred balances to receiver (92ms)
v emits a TransferBatch log
VvV preserves operator's balances not involved in the transfer (126ms)
when sending to a valid receiver
without data
Vv debits transferred balances from sender (77ms)
VvV credits transferred balances to receiver (62ms)
v emits a TransferBatch log
v calls onERC1155BatchReceived
with data
Vv debits transferred balances from sender (62ms)
Vv credits transferred balances to receiver (110ms)
v emits a TransferBatch log
Vv calls onERC1155Received
to a receiver contract returning unexpected value
Vv reverts (286ms)
to a receiver contract that reverts
Vv reverts (367ms)
to a receiver contract that reverts only on single transfers
Vv debits transferred balances from sender (94ms)
Vv credits transferred balances to receiver (62ms)
v emits a TransferBatch log
v calls onERC1155BatchReceived
to a contract that does not implement the required function
Vv reverts (377ms)
Contract interface
ERC165
ERC165's supportsInterface(bytes4)
v uses less than 30k gas (204ms)
v claims support (109ms)
supportsInterface(bytes4)
v has to be implemented
ERC1155
ERC165's supportsInterface(bytes4)
Vv uses less than 30k gas (244ms)
Vv claims support (77ms)
balanceOf(address,uint256)
v has to be implemented
balanceOfBatch(address[],uint256[])
v has to be implemented
setApproval ForAll (address,bool)
v has to be implemented
isApprovedForAll(address,address)
v has to be implemented
safeTransferFrom(address,address,uint256,uint256,bytes)
v has to be implemented
safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)
v has to be implemented
internal functions
_mint
Vv reverts with a zero destination address (175ms)
with minted tokens
v emits a TransferSingle event
Vv credits the minted amount of tokens (46ms)
_mintBatch
Vv reverts with a zero destination address (173ms)
Vv reverts if length of inputs do not match (414ms)
with minted batch of tokens
Vv emits a TransferBatch event
Vv credits the minted batch of tokens (79ms)
_burn
Vv reverts when burning the zero account's tokens (205ms)
Vv reverts when burning a non-existent token id (177ms)
Vv reverts when burning more than available tokens (350ms)
with minted-then-burnt tokens
v emits a TransferSingle event
Vv accounts for both minting and burning (89ms)
_burnBatch
Vv reverts when burning the zero account's tokens (171ms)
Vv reverts if length of inputs do not match (435ms)
Vv reverts when burning a non-existent token id (188ms)
with minted-then-burnt tokens
Vv emits a TransferBatch event
Vv accounts for both minting and burning (124ms)
ERC1155MetadatalRI
v emits no URI event in constructor
Vv sets the initial URI for all token types (141ms)
_setURI
Vv emits no URI event (144ms)
Vv sets the new URI for all token types (411ms)

Contract: ERC1155Supply
before mint
Vv exist (79ms)
v totalSupply (79ms)
after mint

single

Vv exist (59ms)

Vv totalSupply (63ms)
batch

Vv exist (124ms)

Vv totalSupply (150ms)

after burn

single

Vv exist (62ms)

Vv totalSupply (69ms)
batch

Vv exist (124ms)

v totalSupply (123ms)

Contract: ERC20Capped
once deployed
capped token
Vv starts with the correct cap (76ms)
v mints when amount is less than cap (346ms)
v fails to mint if the amount exceeds the cap (459ms)
v fails to mint after cap is reached (399ms)

Contract: ERC721
Contract interface
ERC165
ERC165's supportsInterface(bytes4)
Vv uses less than 30k gas (171ms)
Vv claims support (62ms)
supportsInterface(bytes4)
v has to be implemented
ERC721
ERC165's supportsInterface(bytes4)
v uses less than 30k gas (86ms)
v claims support (65ms)
balanceOf(address)
v has to be implemented
ownerOf (uint256)
v has to be implemented
approve(address,uint256)
v has to be implemented
getApproved(uint256)
v has to be implemented
setApproval ForAll (address,bool)
v has to be implemented
isApprovedForAll(address,address)
v has to be implemented
transferFrom(address,address,uint256)
v has to be implemented
safeTransferFrom(address,address,uint256)
v has to be implemented
safeTransferFrom(address,address,uint256,bytes)
v has to be implemented
with minted tokens
balanceOf
when the given address owns some tokens
v returns the amount of tokens owned by the given address (90ms)
when the given address does not own any tokens
Vv returns @ (45ms)
when querying the zero address
Vv throws
ownerOf
when the given token ID was tracked by this token
Vv returns the owner of the given token ID (76ms)
when the given token ID was not tracked by this token
Vv reverts
transfers
via transferFrom
when called by the owner
Vv transfers the ownership of the given token ID to the given address (44ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (62ms)
v emits an Approval event
Vv adjusts owners balances (63ms)
Vv adjusts owners tokens by index (140ms)
when called by the approved individual
Vv transfers the ownership of the given token ID to the given address (93ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (63ms)
v emits an Approval event
v adjusts owners balances (45ms)
Vv adjusts owners tokens by index (156ms)
when called by the operator
Vv transfers the ownership of the given token ID to the given address (74ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (63ms)
v emits an Approval event
Vv adjusts owners balances (59ms)
Vv adjusts owners tokens by index (206ms)
when called by the owner without an approved user
Vv transfers the ownership of the given token ID to the given address (77ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (73ms)
Vv emits an Approval event
Vv adjusts owners balances (77ms)
Vv adjusts owners tokens by index (141ms)
when sent to the owner
Vv keeps ownership of the token
Vv clears the approval for the token ID (59ms)
v emits only a transfer event
VvV keeps the owner balance (62ms)
Vv keeps same tokens by index (155ms)
when the address of the previous owner is incorrect
Vv reverts (219ms)
when the sender is not authorized for the token id
v reverts (204ms)
when the given token ID does not exist
Vv reverts (186ms)
when the address to transfer the token to is the zero address
v reverts (193ms)
via safeTransferFrom
with data
to a user account
when called by the owner
Vv transfers the ownership of the given token ID to the given address (57ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (89ms)
Vv emits an Approval event
Vv adjusts owners balances (59ms)
Vv adjusts owners tokens by index (150ms)
when called by the approved individual
Vv transfers the ownership of the given token ID to the given address (92ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (74ms)
v emits an Approval event
Vv adjusts owners balances (62ms)
Vv adjusts owners tokens by index (171ms)
when called by the operator
Vv transfers the ownership of the given token ID to the given address (94ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (62ms)
v emits an Approval event
Vv adjusts owners balances (108ms)
Vv adjusts owners tokens by index (157ms)
when called by the owner without an approved user
Vv transfers the ownership of the given token ID to the given address (75ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (76ms)
v emits an Approval event
Vv adjusts owners balances (76ms)
Vv adjusts owners tokens by index (122ms)
when sent to the owner
Vv keeps ownership of the token (94ms)
Vv clears the approval for the token ID (45ms)
Vv emits only a transfer event
Vv keeps the owner balance (76ms)
Vv keeps same tokens by index (173ms)
when the address of the previous owner is incorrect
v reverts (155ms)
when the sender is not authorized for the token id
Vv reverts (269ms)
when the given token ID does not exist
Vv reverts (204ms)
when the address to transfer the token to is the zero address
Vv reverts (189ms)
to a valid receiver contract
Vv calls onERC721Received (295ms)
v calls onERC721Received from approved (224ms)
when called by the owner
Vv transfers the ownership of the given token ID to the given address (62ms)
v emits a Transfer event
Vv clears the approval for the token ID (92ms)
v emits an Approval event
Vv adjusts owners balances (61ms)
Vv adjusts owners tokens by index (179ms)
when called by the approved individual
Vv transfers the ownership of the given token ID to the given address (46ms)

emits a Transfer event
clears the approval for the token ID (62ms)
emits an Approval event
adjusts owners balances (76ms)
Vv adjusts owners tokens by index (155ms)
when called by the operator
Vv transfers the ownership of the given token ID to the given address (104ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (91ms)
v emits an Approval event
Vv adjusts owners balances (78ms)
Vv adjusts owners tokens by index (170ms)
when called by the owner without an approved user
Vv transfers the ownership of the given token ID to the given address (60ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (60ms)
Vv emits an Approval event
Vv adjusts owners balances (74ms)
Vv adjusts owners tokens by index (154ms)
when sent to the owner
Vv keeps ownership of the token (45ms)
Vv clears the approval for the token ID (76ms)
v emits only a transfer event
Vv keeps the owner balance (78ms)
Vv keeps same tokens by index (142ms)
when the address of the previous owner is incorrect
Vv reverts (212ms)
when the sender is not authorized for the token id
v reverts (268ms)
when the given token ID does not exist
Vv reverts (224ms)
when the address to transfer the token to is the zero address
Vv reverts (178ms)
with an invalid token id
Vv reverts (221ms)
without data
to a user account
when called by the owner
Vv transfers the ownership of the given token ID to the given address (76ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (89ms)
v emits an Approval event
Vv adjusts owners balances (77ms)
Vv adjusts owners tokens by index (153ms)
when called by the approved individual
Vv transfers the ownership of the given token ID to the given address (76ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (110ms)
Vv emits an Approval event
Vv adjusts owners balances (71ms)
Vv adjusts owners tokens by index (143ms)
when called by the operator
Vv transfers the ownership of the given token ID to the given address (78ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (99ms)
Vv
v

L L L <L

emits an Approval event
adjusts owners balances (60ms)
Vv adjusts owners tokens by index (136ms)
when called by the owner without an approved user
Vv transfers the ownership of the given token ID to the given address (76ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (77ms)
v emits an Approval event
Vv adjusts owners balances (93ms)
Vv adjusts owners tokens by index (204ms)
when sent to the owner
Vv keeps ownership of the token (78ms)
Vv clears the approval for the token ID (76ms)
Vv emits only a transfer event
Vv keeps the owner balance (49ms)
Vv keeps same tokens by index (158ms)
when the address of the previous owner is incorrect
v reverts (172ms)
when the sender is not authorized for the token id
Vv reverts (237ms)
when the given token ID does not exist
v reverts (184ms)
when the address to transfer the token to is the zero address
Vv reverts (171ms)
to a valid receiver contract
Vv calls onERC721Received (317ms)
Vv calls onERC721Received from approved (333ms)
when called by the owner
Vv transfers the ownership of the given token ID to the given address (92ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (91ms)
v emits an Approval event
Vv adjusts owners balances (76ms)
Vv adjusts owners tokens by index (189ms)
when called by the approved individual
Vv transfers the ownership of the given token ID to the given address (78ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (91ms)
v emits an Approval event
Vv adjusts owners balances (45ms)
Vv adjusts owners tokens by index (125ms)
when called by the operator
Vv transfers the ownership of the given token ID to the given address (94ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (61ms)
Vv emits an Approval event
Vv adjusts owners balances (78ms)
Vv adjusts owners tokens by index (189ms)
when called by the owner without an approved user
Vv transfers the ownership of the given token ID to the given address (104ms)
Vv emits a Transfer event
Vv clears the approval for the token ID (92ms)
v emits an Approval event
Vv adjusts owners balances (61ms)
Vv adjusts owners tokens by index (156ms)
when sent to the owner
Vv keeps ownership of the token (109ms)
Vv clears the approval for the token ID (62ms)
v emits only a transfer event
Vv keeps the owner balance (77ms)
VvV keeps same tokens by index (172ms)
when the address of the previous owner is incorrect
Vv reverts (209ms)
when the sender is not authorized for the token id
Vv reverts (226ms)
when the given token ID does not exist
Vv reverts (241ms)
when the address to transfer the token to is the zero address
Vv reverts (208ms)
with an invalid token id
Vv reverts (202ms)
to a receiver contract returning unexpected value
Vv reverts (470ms)
to a receiver contract that reverts with message
Vv reverts (485ms)
to a receiver contract that reverts without message
Vv reverts (741ms)
to a receiver contract that panics
Vv reverts (693ms)
to a contract that does not implement the required function
Vv reverts (444ms)
safe mint
via safeMint
Vv calls onERC721Received — with data (511ms)
Vv calls onERC721Received — without data (458ms)
to a receiver contract returning unexpected value
Vv reverts (639ms)
to a receiver contract that reverts with message
Vv reverts (618ms)
to a receiver contract that reverts without message
Vv reverts (568ms)
to a receiver contract that panics
Vv reverts (713ms)
to a contract that does not implement the required function
Vv reverts (415ms)
approve
when clearing approval
when there was no prior approval
Vv clears approval for the token (98ms)
v emits an approval event
when there was a prior approval
Vv clears approval for the token (92ms)
v emits an approval event
when approving a non-zero address
when there was no prior approval
Vv sets the approval for the target address (93ms)
v emits an approval event
when there was a prior approval to the same address
Vv sets the approval for the target address (108ms)
v emits an approval event
when there was a prior approval to a different address

Vv sets the approval for the target address (110ms)
v emits an approval event
when the address that receives the approval is the owner
v reverts (238ms)
when the sender does not own the given token ID
Vv reverts (144ms)
when the sender is approved for the given token ID
Vv reverts (475ms)
when the sender is an operator
Vv sets the approval for the target address (109ms)
v emits an approval event
when the given token ID does not exist
Vv reverts (216ms)
setApprovalForAll
when the operator willing to approve is not the owner
when there is no operator approval set by the sender
v approves the operator (287ms)
Vv emits an approval event (146ms)
when the operator was set as not approved
Vv approves the operator (251ms)
v emits an approval event (159ms)
Vv can unset the operator approval (218ms)
when the operator was already approved
Vv keeps the approval to the given address (268ms)
v emits an approval event (187ms)
when the operator is the owner
Vv reverts (219ms)
getApproved
when token is not minted
Vv reverts (60ms)
when token has been minted
Vv should return the zero address (77ms)
when account has been approved
Vv returns approved account (140ms)
_mint(address, uint256)
Vv reverts with a null destination address (208ms)
with minted token
Vv emits a Transfer event
Vv creates the token (157ms)
Vv reverts when adding a token id that already exists (190ms)
_burn
Vv reverts when burning a non-existent token id (188ms)
with minted tokens
with burnt token
Vv emits a Transfer event
v emits an Approval event
Vv deletes the token (185ms)
Vv reverts when burning a token id that has been deleted (281ms)
Contract interface
ERC721Metadata
ERC165's supportsInterface(bytes4)
Vv uses less than 30k gas (206ms)
Vv claims support (108ms)
name()
v has to be implemented
symbol ()
v has to be implemented
tokenURI(uint256)
v has to be implemented
metadata
v has a name (109ms)
v has a symbol (111ms)
token URI
Vv return empty string by default (92ms)
Vv reverts when queried for non existent token id (92ms)
base URI
Vv base URI can be set (331ms)
Vv base URI is added as a prefix to the token URI (379ms)
Vv token URI can be changed by changing the base URI (479ms)
Contract interface
ERC721Enumerable
ERC165's supportsInterface(bytes4)
vV uses less than 30k gas (271ms)
v claims support (93ms)
totalSupply()
v has to be implemented
token0fOwnerByIndex(address,uint256)
v has to be implemented
tokenByIndex(uint256)
v has to be implemented
with minted tokens
totalSupply
Vv returns total token supply (75ms)
token0fOwnerByIndex
when the given index is lower than the amount of tokens owned by the given address
Vv returns the token ID placed at the given index (107ms)
when the index is greater than or equal to the total tokens owned by the given address
v reverts (108ms)
when the given address does not own any token
Vv reverts (76ms)
after transferring all tokens to another user
Vv returns correct token IDs for target (268ms)
Vv returns correct token IDs for owner (173ms)
Vv returns empty collection for original owner (188ms)
tokenByIndex
Vv returns all tokens (126ms)
Vv reverts if index is greater than supply (77ms)
Vv returns all tokens after burning token 5042 and minting new tokens (1223ms)
Vv returns all tokens after burning token 79217 and minting new tokens (1043ms)
_mint(address, uint256)
v reverts with a null destination address (193ms)
with minted token
Vv adjusts owner tokens by index (139ms)
Vv adjusts all tokens list (126ms)
_burn
Vv reverts when burning a non-existent token id (252ms)
with minted tokens
with burnt token
Vv removes that token from the token list of the owner (94ms)
Vv adjusts all tokens list (123ms)
v burns all tokens (343ms)

Contract: ERC20
v has a name (78ms)
v has a symbol (46ms)
v has 18 decimals (64ms)
total supply
Vv returns the total amount of tokens (62ms)
balanceOf
when the requested account has no tokens
Vv returns zero (44ms)
when the requested account has some tokens
Vv returns the total amount of tokens (76ms)
transfer
when the recipient is not the zero address
when the sender does not have enough balance
Vv reverts (205ms)
when the sender transfers all balance
Vv transfers the requested amount (310ms)
Vv emits a transfer event (157ms)
when the sender transfers zero tokens
Vv transfers the requested amount (333ms)
Vv emits a transfer event (138ms)
when the recipient is the zero address
Vv reverts (217ms)
transfer from
when the token owner is not the zero address
when the recipient is not the zero address
when the spender has enough approved balance
when the token owner has enough balance
Vv transfers the requested amount (395ms)
VvV decreases the spender allowance (238ms)
Vv emits a transfer event (175ms)
Vv emits an approval event (267ms)
when the token owner does not have enough balance
Vv reverts (222ms)
when the spender does not have enough approved balance
when the token owner has enough balance
v reverts (237ms)
when the token owner does not have enough balance
Vv reverts (190ms)
when the recipient is the zero address
v reverts (252ms)
when the token owner is the zero address
Vv reverts (249ms)
approve
when the spender is not the zero address
when the sender has enough balance
Vv emits an approval event (158ms)
when there was no approved amount before
Vv approves the requested amount (266ms)
when the spender had an approved amount
Vv approves the requested amount and replaces the previous one (265ms)
when the sender does not have enough balance
v emits an approval event (159ms)
when there was no approved amount before

Vv approves the requested amount (262ms)
when the spender had an approved amount
Vv approves the requested amount and replaces the previous one (266ms)
when the spender is the zero address
Vv reverts (206ms)
decrease allowance
when the spender is not the zero address
when the sender has enough balance
when there was no approved amount before
Vv reverts (238ms)
when the spender had an approved amount
v emits an approval event (135ms)
Vv decreases the spender allowance subtracting the requested amount (268ms)
Vv sets the allowance to zero when all allowance is removed (222ms)
Vv reverts when more than the full allowance is removed (254ms)
when the sender does not have enough balance
when there was no approved amount before
Vv reverts (219ms)
when the spender had an approved amount
Vv emits an approval event (173ms)
Vv decreases the spender allowance subtracting the requested amount (283ms)
Vv sets the allowance to zero when all allowance is removed (282ms)
Vv reverts when more than the full allowance is removed (233ms)
when the spender is the zero address
Vv reverts (205ms)
increase allowance
when the spender is not the zero address
when the sender has enough balance
v emits an approval event (204ms)
when there was no approved amount before
Vv approves the requested amount (252ms)
when the spender had an approved amount
v increases the spender allowance adding the requested amount (237ms)
when the sender does not have enough balance
Vv emits an approval event (172ms)
when there was no approved amount before
Vv approves the requested amount (204ms)
when the spender had an approved amount
Vv increases the spender allowance adding the requested amount (235ms)
when the spender is the zero address
Vv reverts (235ms)
_mint
Vv rejects a null account (220ms)
for a non zero account
v increments totalSupply (77ms)
Vv increments recipient balance (94ms)
Vv emits Transfer event

Contract: ERC721URIStorage

token URI

v it is empty by default (63ms)

reverts when queried for non existent token id (75ms)
can be set for a token id (204ms)
reverts when setting for non existent token id (222ms)
base URI can be set (236ms)
base URI is added as a prefix to the token URI (456ms)
token URI can be changed by changing the base URI (711ms)
tokenId is appended to base URI for tokens with no URI (248ms)
tokens without URI can be burnt (359ms)
tokens with URI can be burnt (557ms)

L L L L L L <L <L

Contract: ERC20Permit

Vv initial nonce is © (78ms)

Vv domain separator (83ms)

permit
Vv accepts owner signature (269ms)
Vv rejects reused signature (373ms)
Vv rejects other signature (300ms)
Vv rejects expired permit (205ms)

Contract: HikeTokenUUPSUpgradeableMock

Vv upgrade to upgradeable implementation (575ms)
upgrade to upgradeable implementation with call (872ms)
upgrade to and unsafe upgradeable implementation (440ms)
reject upgrade to broken upgradeable implementation (556ms)
reject upgrade to non uups implementation (555ms)
reject proxy address as implementation (2264ms)

L L L L <L

Contract: ERC2@Votes
v initial nonce is @ (63ms)
Vv domain separator (81ms)
v minting restriction (224ms)
set delegation
call
Vv delegation with balance (971ms)
Vv delegation without balance (325ms)
with signature
Vv accept signed delegation (575ms)
Vv rejects reused signature (436ms)
Vv rejects bad delegatee (187ms)
Vv rejects bad nonce (216ms)
Vv rejects expired permit (217ms)
change delegation
v call (884ms)
transfers
v no delegation (139ms)
Vv sender delegation (311ms)
Vv receiver delegation (434ms)
v full delegation (654ms)
Compound test suite

balanceOf

Vv grants to initial account (74ms)
numCheckpoints

Vv returns the number of checkpoints for a delegate (2210ms)
getPastVotes

Vv reverts if block number >= current block (60ms)
Vv returns @ if there are no checkpoints (76ms)
Vv returns the latest block if >= last checkpoint block (540ms)
v returns zero if < first checkpoint block (584ms)
Vv generally returns the voting balance at the appropriate checkpoint (2209ms)
getPastTotal Supply
Vv reverts if block number >= current block (76ms)
v returns @ if there are no checkpoints (75ms)
Vv returns the latest block if >= last checkpoint block (587ms)
Vv returns zero if < first checkpoint block (602ms)
Vv generally returns the voting balance at the appropriate checkpoint (1298ms)

Contract: ERC2771Context
v not able to set forwader other than owner (221ms)
Vv recognize trusted forwarder (81ms)
when called directly
msgSender
Vv returns the transaction sender when called from an EOA (162ms)
Vv returns the transaction sender when from another contract (198ms)
msgData
Vv returns the transaction data when called from an EOA (132ms)
Vv returns the transaction sender when from another contract (224ms)
when receiving a relayed call
msgSender
Vv returns the relayed transaction original sender (493ms)
msgData
Vv returns the relayed transaction original data (356ms)

Contract: ERC721Root
Mint tokens
v mint tokens from non predicate
v mint tokens from predicate (381ms)
Mint tokens with metadata
v mint tokens from non predicate
v mint tokens from predicate (391ms)

Contract: NFTChildToken
Safe mint
Vv only transactor can safe mint tokens (174ms)
v safe minting to happen in autoincrement number (283ms)
v only transactor can safe batch mint tokens (203ms)
Vv Safe batch mint can only for more than O addreses (234ms)
Vv safe minting to happen in batch (1880ms)
Should mint token on deposit
Vv ChildChainManagerProxy can make deposit tx (397ms)
Vv Deposit called by non depositor account (267ms)
Should burn token on withdraw
v Should not allow to withdraw token not owner by user (601ms)
v Should burn token on withdraw (598ms)
v Should burn token on withdraw for second time (1091ms)
Should mint tokens on batch deposit
v ChildChainManagerProxy can make batch deposit tx (809ms)
Should burn tokens on batch withdraw
v should not allow batch withdraw more than batchSize (220ms)
v Should not allow to withdraw token not owner by user (606ms)
Vv User should be allowed to withdraw in batch (1256ms)
Withdraw tokens with metadata
Vv Should not allow to withdraw token not owner by user (541ms)
Vv Should emit event with token metadata (791ms)

Contract: Rushll155RootToken

mint token

v non transactor cannot mint new tokenIds (270ms)

Vv transactor should be able to mint new tokens (328ms)
mint token batch

v non transactor cannot mint new tokenIds (302ms)

Vv transactor should be able to mint new tokens (346ms)

Contract: ERC721
Contract interface
AccessControlEnumerable
ERC165's supportsInterface(bytes4)
VvV uses less than 30k gas (157ms)
v claims support (66ms)
getRoleMember(bytes32,uint256)
v has to be implemented
getRoleMemberCount(bytes32)
v has to be implemented
AccessControl
ERC165's supportsInterface(bytes4)
Vv uses less than 30k gas (129ms)
Vv claims support (81ms)
hasRole(bytes32,address)
v has to be implemented
getRoleAdmin(bytes32)
v has to be implemented
grantRole(bytes32,address)
v has to be implemented
revokeRole(bytes32,address)
v has to be implemented
renounceRole(bytes32,address)
v has to be implemented
base URI
v only owner can set base URI (316ms)
v only transactor should be able to set token URI (175ms)

Contract: Rush1155ChildToken
token uri
v only owner can update (299ms)
Vv owner should be able to update (255ms)
mint tokens
v non transactor cannot mint new tokenIds (192ms)
minting new tokenIds to happen in autoincrement number (281ms)
non transactor cannot mint existing tokenIds (471ms)
minting non existing tokenId (19@ms)
minting existing tokenIds (611ms)
non transactor cannot get tokens of owners (378ms)
transactor can get tokens of owners in batches (717ms)
Vv transactor can get tokens of owners in single batch (701ms)
Should mint token on deposit
Vv ChildChainManagerProxy can make deposit tx (504ms)
Vv Deposit called by non depositor account (268ms)
VvV Deposit called on invalid user account (173ms)
Should burn token on single withdraw
v Should not allow to withdraw token not owner by user (537ms)
v Should burn token on single withdraw (552ms)
Should burn tokens on batch withdraw
v Should not allow to withdraw batch token not owner by user (856ms)
v Should burn token on batch withdraw (976ms)

L L L L L <L

Contract: HikeChildToken
Update ChildChainManager
Vv Update ChildChainManager from non owner (224ms)
Vv Update ChildChainManager with invalid address (209ms)
v Update ChildChainManager with valid address (698ms)
Withdraw
v Withdraw tokens of user (320ms)

Contract: TransactorRole
with token deployed
Only transactor function
v Non transactor should not be allowed (79ms)
isTransactor
Vv should return false for non transactors (51ms)
addTransactor
Vv should not allow invalid address (209ms)
v non owner cannot call (315ms)
v should only be called by owner (425ms)
removeTransactor
v non owner cannot call (290ms)
Vv should only be called by owner (605ms)

Contract: TransactorRoleUpgradeable
with token deployed
Only transactor function
v Non transactor should not be allowed (76ms)
isTransactor
Vv should return false for non transactors (49ms)
addTransactor
v should not allow invalid address (160ms)
v non owner cannot call (267ms)
Vv should only be called by owner (419ms)
removeTransactor
v non owner cannot call (310ms)
Vv should only be called by owner (537ms)

Contract: VestingWallet
Vv rejects zero address for beneficiary (222ms)
Vv check vesting contract (154ms)
vesting schedule
ERC20 vesting
Vv check vesting schedule (62ms)
Vv execute vesting schedule (709ms)

Contract: Wallet Executor
Calling executor method of WalletExecutor
Vv Calling executor method with invalid transactor (195ms)
Vv Calling executor method with invalid wallet address (229ms)
Vv Calling executor method with invalid transactionId (155ms)
v Calling executor method without adding wallet executor as spender (210ms)
Vv Calling executor method with valid transactor (384ms)

646 passing (12m)

Code Coverage

File % Stmts % Branch % Funcs % Lines Uncovered Lines
contracts\ 100 100 100 100
CompanyCustodialWallet.sol 100 100 100 100
ContractSpendable. sol 100 100 100 100
ContractSpenderManager. sol 100 100 100 100
ContractTokenUnlockManager. sol 100 100 100 100
CustodialWallet.sol 100 100 100 100
CustodialWalletFactory.sol 100 100 100 100
Minimal Forwarder.sol 100 100 100 100
NFTChildToken. sol 100 100 100 100
NFTRootToken. sol 100 100 100 100
NFTToken.sol 100 100 100 100
Rush1155ChildToken.sol 100 100 100 100
Rush1155RootToken. sol 100 100 100 100
Rush1155Token. sol 100 100 100 100
RushChildToken. sol 100 100 100 100
RushToken. sol 100 100 100 100
TransactorRoleControl.sol 100 100 100 100
TransactorRoleControlUpgradeable. sol 100 100 100 100
VestingWallet.sol 100 100 100 100
WalletExecutor.sol 100 100 100 100
contracts\mocks\ 100 100 100 100
CustodialWalletMock. sol 100 100 100 100
ERC1155ReceiverMock. sol 100 100 100 100
ERC/21RecieverMock.sol 100 100 100 100
Hikel155Mock. sol 100 100 100 100
Hike721Mock.sol 100 100 100 100
HikeTokenMock. sol 100 100 100 100
Rush1155TokenMock. sol 100 100 100 100
TransactorRoleMock. sol 100 100 100 100
All files 100 100 100 100

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

98455a5eedddaebd319b0ab028f£fad29894£4998c5£4d8bBb46c8ef2ab6c32fc9 . /CompanyCustodialWallet.sol
316efe75fdcbd84002085ad0073d3506fcc0344£0242aca®3797b2£272a498da ./ContractSpendable.sol
b4cdbdd13b66309d2253¢c8b12/75ce4c@8d4a6393f354a/86cb32b8abblll4c4a ./ContractSpenderManager.sol
e84beab5/7311ce34b/857d1ec4949ffe/b0@a4ddddb516367/0£d25276cd8270554 . /ContractTokenUnlockManager.sol
Bebacd/88c0d99758092fcb3eac530321248febbb0lcbc4elid3ee97604ect9/ . /CustodialWallet.sol
58d26294a9a5264eea8a83444a08f7b37588ed89e677060e096301d7c875c88b ./CustodialWalletFactory.sol
306da8ab6ca/ae9990bt648c6/77/627aeclc5/2e331b£8749e658cdfaaad449523 . /Minimal Forwarder. sol
b3bf7a48balaab752b0ec4b8d490bd9030a781929£740£977d5ae5bc8b58a6e5 . /NFTChildToken.sol
adbbc34f11bac41£4037493315ccf51244c3eccd54ec2279139pbcaca42eeabe . /NFTRootToken. sol

7/70618423ce4d609855861cb633b2adad889029163832325a41478a36766£88e . /NFTToken.sol

b10866a98c9e1de8d99d38881£626552c095a496ee4e60dc4a3a8873£5381a08
09d1d7019a1688b/ab%9aa2265772732c£8a2fc809093d68£52e597373ba8e08a
cc8543cbe3ecc3c09d36£5da4142857/0bbd4b35582¢c4blbbc46a8d4c5tfabd9e
8b5d6cdf093bfd1964£182429de06/8f1f4eeal30da9231288e080/a0d35b68b
5acd5bbb33b523d2089a547/52£24b4005e4b234£044c£33£130021499096258
4e8b1c2a9c89414016c3bde96ad8bfle9f213b43c68ae5/0eeb66fabb61déc8lab
e/a/df439d23587c56bb252f7ef609eebb/269a727e24632a91898a70a1£931d
57ddb5e687cbelc34953£072067/494318debbdabd143e74339d58cc4b32£345a
eddbel/d4697001c2be2abed45cf94e2b5eeatfad/8eb4bfbbell53£9¢c1207408b
574c57a0a44a36e6358a8ddc/780clae6a43909c82c0619cctb4d5f4d25ale40
/ac@/73ddeca253c5755elaa/b20bccfa5dc@1ldd4cbblceatf9c4b9980£083282
cealfedeccbe561a39114e283799d£4d43b0b6d19bc92ab23691554c£0e42790
/14bee/7182d645ea1086b/71fb2f95ea4d1e6209c4d602e6a6d6d2d0c/262d617
a/16d0aaf21e235b2e294c479d1369e338£5d351556£107e7645406138bc5483
0a8fe86f483b12£8f5b200eabblc5ec298452ca/40588204d340508p62863105
d46ed4/b986d555893fdbfdc5d7e9b627c57c03817f3a4ca//d2e6¢cb05268c7/7/
8ca/el5ff96775427b87¢c16833d98579e81e4018e1727a698920c880a3bB5398
£41d3292ce2aceb6f4b93557/78371b6005ed5d9084e£48545£abb0a8099840832
e3/bd958886388930341235cb25673b2537969580604355de10bb86b28fc4bdc
/60a67c380b4d15094/7/a81e351a8e/727543b08cd5e597ddf5a5bfd/0b91baabb
3a46d5cd8721986232574ec152/febfe42042cdccb6eb91e3b/72d1£313e8bad/0
£954cd5£064/87e6637effba559dfee92/860ee44dbbabat/46049099aad%aed9
1bb85c10d60/c6£fb452a09e813db6at8£54484£058d/b4add5e5757b153e467¢£
b62d6e62e60cOc15988e1d003b3c19623a22¢c92444124a669aeff4304fa%¢eadc
4e8b1c2a9c89414016c3bde96ad8bfle9f213b43c68ae5/0eeb66fabb61déc8lab

23e69a09/d8da%ed4/c29d920fbBae943da221cad4ala/286a6481c9e9c2e5bbb

Tests

420a3c3ab40dc69e52e£699a623157£6af5d7b1781ce5862868ae5559£cb9389
faf19f3f35a05c98ec3a0226a3b2eeleald3eb65379e594883d4/7/491bbaleela?
566ff66ee886€92c32e73411329079%eabeabdd13£fb31da748c667342edc84c18
93bf53e8ce9/b2416d6d6b4eeceleac9a80ab687a8d/7605cfbcabl12524e7£4d08
8aad85fe2b40d046£32899d9e9b3dd054bb6bdbbd3a23afe7e5b8d03e56c4£785
ed01e582cc64c2540bdbb6fedab706bdac20f2£516e897cab609ae8ab8d4£fbfbf
d44afd873e69ecb@fadcc3b/0118598aa9eb6ab/cdf2b93a7a3fe/70bd65793033
e3b3f7833b82c/7000ca82dafa9aedafce5367004e3da34ac3108de8a/70002098
6c154bc3e2cOb81a49dac58d922falc4130adb/cfalleb20elfb3aaf’3e911827
90ee2alb82c3488db0dbfleef463c4bd55£5ef9bf0fe8edb422£30daa9d4e206
8£781balc4ed75d21221££7983071e95c01£56ccPe®9a7098cd2d0b633544648
dbdaa/b97£89cc592c6b5f4de8be58ed51488bc98cbbbec34951ab275802aa7e8
e8a98836c2ad/890bd5f5e2777a8£2d5f062baec4132e3c134f3dcce8/c4/67d
303e703891cffde377364874905363e759fc4f46bd5afc459b4eaf86b829%9abb7
10da8ee2488a974f0ab83ceebBlcc9fe4d8af53ecbd/759a3d41a83dfcla9b362
18dd65a86d77c2433236d109abdc45cda763a2201b87eabdde759df00895eea4
241el7ebal32bb3cdad65fb8d64759bcflb21ele2414517bfe@e3d4a7£687e3
cdbfa35103d34e9£7154660d6825fb6b233773281015a2ea5d9£01224££f628aa
£21£2339d59d9ddc223b741351e41bb9a88b68a053797683c44416d369e6a83e
19157b0ce2ef6c83101adl6e6ebd4d097£39b0235b6a28924820007bfec4l776
d65e3f7c2c76131a747109e202bcc56079£e69a3d98424562£3dd629e3a3d718
600c23367b795776128£6add0%9adea93e41242£f9c£fdf2275fe61a89bc4053554
cl31a21e3431454087addf95a5c£d8313466344549d33a788cf6da70bff0d75al
db76c713d£5dd014ecd1704a76a5deelf309528a4£4576d4b69caf5866£825ce
5b3ec81bad3344ed9e8c88b48fea’/43262fcaa/48be56afd8f49d2482d5a/ffe
491929242£5065be37c623c00f69feb82100df3£5dbb61a82baec3cl71bc64763
93d3a6cde281b4982f64alf2dabdalcdla®093287a03a9d8elbdefa858adct5t
7cd079ab6£72581453¢c1181885e70db2c100ad80c14494aab3d37de34c55acdb
b08961c8157a2cdaftb91261130985796db8b66£fbc18267eb327b81le408eaf2e8
362aab89765fcl23a/bd35ea34bc4deb4/79b33ac6leeb5bce4ebec5cabb651bdb9
1b991£d38b2£13b505a8cP@ebbeaa’79alcf28d6887739£fbb331b73a41ca32£f3
47c2a5d997452a58013£85e6093c587b236fb9£532¢c17b8412e23071a7e76323

8a2d8930£4307/fbe39/be56c0e53c6387£44330fb9954a045ea15e5788961c59

./Rush1155ChildToken. sol
./Rush1155Roo0tToken. sol
./Rush1155Token. sol
./RushChildToken. sol

./RushToken.sol
./TransactorRoleControl.sol
./TransactorRoleControlUpgradeable. sol
./VestingWallet.sol
./WalletExecutor.sol
./CustodialWalletMock. sol
./ERC1155ReceiverMock. sol
./ERC721RecieverMock. sol
./Hikel155Mock. sol

./Hike721Mock.sol

. /HikeTokenMock. sol
./Rush1155TokenMock. sol
./TransactorRoleMock. sol
./RushToken.sol
./contracts/ContractSpendable.sol
./contracts/ContractSpenderManager.sol
./contracts/ContractTokenUnlockManager. sol
./contracts/CustodialWallet.sol
./contracts/CustodialWalletFactory.sol
./contracts/NFTToken.sol
./contracts/TransactorRoleControl.sol

./contracts/VestingWallet.sol

./CompanyCustodialWallet.test.js
./Context.behavior. js
./ContractSpenderManager.test.js
./ContractUnlockManager.test.js
./CustodialWallet.test.js
./CustodialWalletFactory.test.js
./eip712.js
./ERC1155.behavior. js
./ERC1155.test.js
./ERC1155Supply.test.js
./ERC20.behaviour.js
./ERC20Capped.behavior.js
./ERC20Capped.test.js
./ERC721.behavior.js
./ERC721.test.js
./ERC721URIStorage.test.js
./HikeToken.test.]s
./HikeTokenPermit.test.js
./HikeTokenUUPSUpgradeable.test.js
./HikeTokenVotes.test.js
./MetaTransaction.test.js
./NFTChildToken.test.js
./NFTRootToken.test.js
./NFTToken.test.]s
./Rush1155ChildToken.test.js
./Rushl1155Ro0tToken.test.js
./RushChildToken.test.js
./SupportsInterface.behavior.js
./TransactorRole.behaviour.js
./TransactorRoleControl.test.js
./TransactorRoleControlUpgradeable.test.js
./VestingWallet.behaviour.js

./VestingWallet.test.js

8f1ceB0d998caf9cc6bd3clfB1bd906a2600c8bcB@355alac22d958aeb4£f1e0311

420a3c3ab40dc69e52e£699a623157£6af5d/b1781ce5862868ae5559£fcb9389

fafl19f3£35a05c98ec3ab226a3b2eecleald3eb6537/9e594883d47491bba2eeba2

566f£66ee886e92c32e7341132907/9eabeabdl13fb31da’/48c667342edc84cl8

93bf53e8ce9/b2416d6d6bb4eecedeac9a80ab687a8d/605ctbcadl2524e7£4d08

8aad85fe2b40d046£32899d9e9b3dd054b6bdbbd3a23afe/e5b8d03e56c4£785

ed@le582cc64c2540bdbbfedab/06bdac20£2£516e897/cabb609ae8ab8d4fbifbt

d44afd873e69ecl0fadcc3b/0118598aa9ebab/cdf2b93a/a3fe/0bd65793033

e3b3f7833b82c/7000ca82datfa9aedatce536/7/004e3da34ac3108de8a/0002098

6c154bc3e2cOb81a49dac58d922falc4130adb/cfalleb620eltb3aatf’3e911827

90ee2alb82c3488db0dbf0eef463c4bd55f5ef9bf0fe8edb422f30daa9d4e206

8f781balc4ed/5d21221££7983071e95c01£56ccleB9a7098cd2d0b633544643

dbdaa/b97£89cc592c6b5£4de8be58ed51488bc98cbbbec34951ab2/5802aa7e8

€8a98836c2ad/890bd5f5e2777a8£2d5f062baec4132e3c134f3dcce8/c4/67d

303e703891cffde’37/7364874905363e759fc4£46bd5aftc459b4eaf86b829abb7/

10da8ee2488a974f0ab83ceebllccI9tfe408at53ecbd/59a3d41a83dfcla9p362

18dd65a86d/7/c2433236d109abdc45cda’/63a2201b87eabdde/59df00895eea4

241el7ebal32bb3cdad65fb8d64/59bcflb21lele2414517/bfe@e3d4a/£687e3

cdbfa35103d34e9£7154660d6825fb6b233773281015a2€a5d9£01224££628aa

£21£2339d59d9ddc223b/7/41351e41bb9a88b68a0B5379/683c44416d369e6a83e

19157b0ce2ef6c83101ad16e6ebd4d09/£3900235b6a2892482000/bftec41l7/76

d65e3f/c2c/76131a747109e202bcc5607/9fe69a3d98424562£3dd629e3a3d/718

600c2336/b795776128f6add09adea93e41242£9cfdf22/75fe61a89bc4053554

cl31a21e3431454087addf95a5c£d8313466344549d33a/7/88ct6da/0bff0/5al

db76c713df5dd014ecdl/704a/6a5deelf309528a4£4576d4b69cat5866£825ce

5b3ec81bad3344ed9e8c838b48fea’/43262fcaa/48be56afd8£49d2482d5a/ffe

491929242£5065be37c623c00f69feb82100df3£5db61a82baec3cl/1bc647/63

93d3abcde281b4982f64alf2dabda2cdlalb93287a03a9d8elbdefa858adct5t

/cd@79ab6£72581453¢c1181885e/70db2¢c100ad80c14494aab3d3/de34c55acdb

b08961c8157a2cdatb91261130985796db8b66£fbc18267eb32/b81e408eaf2e8

562aab89/65fcl23a/bd35ea34bc4deb4/79b33ac6leeb5beced4ebe5cab651b0b9

1b991£d38b2£13b505a8cB0ebbeaa/9alct28d6887/739ffbb331b/3a41ca32£f3

47c2a5d997452a58013£85e6093¢c587/b236fb9£532¢c1/b8412e23071a/e/76323

8a2d8930£430/7/fbe39/be56c0e53c6387/£44330fb9954a045€a15e5788961c59

8f1ceB0d998caf9cc6bd3clfB1bd906a2600c8bcB@355alac22d958aeb4£f1e0311

98455a5eedddaebd319p0ab028££ad29894£4998c5£4d8bBb46c8ef2abc32£c9

e3/bd958886388930341235cb25673b2537969580604355de10bb86b28fc4bdc

/60a67/c380b4d15094/a81e351a8e/727543b08cd5e597ddf5a5bfd/0b91baabb

3a46d5cd8721986232574ec152/febfe42042cdccb6eb91e3b/72d1£313e8bad/0

£954cd5£064/87e6637effba559dfee92/860ee44dbbabat/46049099aad%aed9

1bb85c10d60/c6£fb452a09e813db6at8£54484£058d/b4add5e5757b153e467¢£

306da8abbca/ae9990bt648c67//627aeclc572e331b£8749e658cdfaaad449523

b3bf7a48babaab/52b0ec4b8d490bd9030a/81929£740£9/7d5ae5bc8b58abe5

adbbc34f11bac41£4037/493315ccf51244c3eccd54ec22/79139bbcacad42eeabce

b62d6e62e60cOc15988e1d003b3c19623a22¢c92444124a669aeff4304fa%¢eadc

b10866a98c9e1de8d99d38881£626552c095a496ee4e60dc4a3a8873£5381a08

09d1d/7019a1688b/ab9aa2265772732c£8a2fc809093d68£52e597373ba8e08a

cc8543cbe3ecc3c09d36£5da414285/7/0bbd4b35582¢c4blbbc46a8d4c5tfabd9e

8b5d6cdf093bfd1964£182429de06/8f1f4eeal30da9231288e080/7/a0d35b68b

£41d3292ce2aceb6f4b93557/7/8371b6005ed5d9084e£48545£abb0a8099840832

4e8b1c2a9c89414016c3bde96ad8bfle9f213b43c68ae5/0eeb66fabb61ldéc8lab

23e69a09/d8da%ed4/c29d920fb0ae943da221ca4ala/286a6481c9e9c2e5bbb

574c57a0a44a36e6358a8ddc/7780clae6a43909c82c0619cctb4d5f4d25ale40

/ac@/73ddeca253c5755elaa/b20bccfabdc@1ldd4cbblceatf9c4b9980£083282

cealfedeccbe561a39114e283799d£4d43b0b6d19bc92ab23691554c£0e42790

/14bee/7182d645ea1086b/71fb2f95ea4d1e6209c4d602e6a6d6d2d0c/262d617

a/16d0aaf21e235b2e294c479d1369e338£5d351556£107e7645406138bc5483

0a8fe86f483b12£8f5b200eabblc5ec298452ca/40588204d340508b62863105

d46ed4/b986d555893fdbfdc5d/7e9b627c57c03817f3a4ca//d2eb6¢cbB5268c7/7/

035e2df8cba5cb5b401389p1£0c/44d489426dc86c9efI9p53a/8a6€6329294c5

./WalletExecutor.test.js
./CompanyCustodialWallet.test.js
./Context.behavior.js
./ContractSpenderManager.test.js
./ContractUnlockManager.test.js
./CustodialWallet.test.js
./CustodialWalletFactory.test.js
./eip/712.js

./ERC1155.behavior. js

./ERC1155.test. s
./ERC1155Supply.test.js
./ERC20.behaviour.js
./ERC20Capped.behavior. js
./ERC20Capped.test.js
./ERC721.behavior.]js

./ERC721.test.]s
./ERC721URIStorage.test.js
./HikeToken.test.]s
./HikeTokenPermit.test.js
./HikeTokenUUPSUpgradeable.test.js
./HikeTokenVotes.test.js
./MetaTransaction.test.js
./NFTChildToken.test.js
./NFTRootToken.test.js
./NFTToken.test.]s
./Rush1155ChildToken.test.js
./Rush1155Ro0tToken.test.js
./RushChildToken.test.js
./SupportsInterface.behavior.js
./TransactorRole.behaviour.js
./TransactorRoleControl.test.js
./TransactorRoleControlUpgradeable.test.]js
./VestingWallet.behaviour. js
./VestingWallet.test.js
./WalletExecutor.test.js
./contracts/CompanyCustodialWallet.sol
./contracts/ContractSpendable.sol
./contracts/ContractSpenderManager.sol
./contracts/ContractTokenUnlockManager. sol
./contracts/CustodialWallet.sol
./contracts/CustodialWalletFactory.sol
./contracts/Minimal Forwarder. sol
./contracts/NFTChildToken. sol
./contracts/NFTRootToken. sol
./contracts/NFTToken.sol
./contracts/Rush1155ChildToken. sol
./contracts/Rushl155RootToken. sol
./contracts/Rush1155Token. sol
./contracts/RushChildToken.sol
./contracts/RushToken.sol
./contracts/TransactorRoleControl.sol
./contracts/VestingWallet.sol
./contracts/mocks/CustodialWalletMock.sol
./contracts/mocks/ERC1155ReceiverMock. sol
./contracts/mocks/ERC721RecieverMock. sol
./contracts/mocks/Hikel155Mock. sol
./contracts/mocks/Hike/721Mock. sol
./contracts/mocks/HikeTokenMock. sol
./contracts/mocks/Rush1155TokenMock. sol

./contracts/mocks/TransactorRoleMock. sol

Changelog

» 2022-03-14 - Initial report

« 2022-04-11 - Final report

About Quantstamp

Quantstamp is a ¥ Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,
and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected S5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment
services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;
however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.
Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.
Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the
content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as
described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or
operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.
Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.
Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any
associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that
could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the
reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim
all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the
implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any
product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of
products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise
caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

n Quantstamp’ Hike - Rush Gaming Audit

