
April 14th 2022 — Quantstamp Verified

Hike - Rush Gaming

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Wallet and NFT contract

Auditors Souhail Mssassi, Research Engineer

Philippe Dumonet, Senior Research Engineer

Marius Guggenmos, Senior Research Engineer

Timeline 2022-03-07 through 2022-03-14

EVM Berlin

Languages Solidity

Methods Architecture Review, Unit Testing, Functional

Testing, Computer-Aided Verification, Manual

Review

Specification Hike Documentation

Documentation Quality Medium

Test Quality Medium

Source Code
Repository Commit

smartcontracts ded4678

smartcontracts 61cf850

Total Issues 23 (21 Resolved)

High Risk Issues 1 (1 Resolved)

Medium Risk Issues 3 (3 Resolved)

Low Risk Issues 11 (10 Resolved)

Informational Risk Issues 7 (6 Resolved)

Undetermined Risk Issues 1 (1 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/hike/smartcontracts/blob/main/README.md
https://github.com/hike/smartcontracts
https://github.com/hike/smartcontracts/commit/ded4678e328f9665f41d513d144bc4f6e4ac40b1
https://github.com/hike/smartcontracts
https://github.com/hike/smartcontracts/commit/61cf85053e5bd41539ef7f573a616732980d628b

Summary of Findings

:

Through reviewing the code, we found of various levels of severity: high-severity, medium-severity, low-severity, informational-severity and undetermined

issues. We recommend addressing all the issues before deploying the code.

Initial audit

23 potential issues 1 3 11 7 1

Quantstamp has checked the commit hash and has determined that all the reported issues have been resolved (that is, either fixed or acknowledged) by the team. More details

regarding each of the issues are provided in the update messages below each issue recommendation.

After reaudit:

61cf850

ID Description Severity Status

QSP-1 Owner Has Excessive Privileges Over RushToken High Fixed

QSP-2 Locked ETH In The Vesting Contract Medium Fixed

QSP-3 Any User Can Release Tokens Informational Fixed

QSP-4 And Not Updated Upon Removing Vesting Party_totalTokensToBeUnlocked _unlockedIndexes Medium Fixed

QSP-5 : Owner Can Remove / Add Vested Parties Or Drain Contract At Any TimeContractTokenUnlockManager Medium Fixed

QSP-6 Owner Can Add Beneficiary Multiple Times Low Fixed

QSP-7 Lack Of Events For Critical State Changes Low Fixed

QSP-8 Incorrect Result In The Unlocked Tokens Low Fixed

QSP-9 Missing Input Verification Low Fixed

QSP-10 Missing Address Validation Low Fixed

QSP-11 Incompatibility With Deflationary Tokens Low Fixed

QSP-12 For Loop Over Dynamic Array Low Fixed

QSP-13 Owner Can Renounce Ownership Low Fixed

QSP-14 Floating Pragma Low Fixed

QSP-15 Using To Send Ether Might Reverttransfer Low Fixed

QSP-16 Approve Race Informational Acknowledged

QSP-17 May Run Out Of GasgetBeneficiaries Informational Fixed

QSP-18 Duplication Of Access Control Logic Informational Fixed

QSP-19 Token ID Not Human Legible In Revert String Informational Fixed

QSP-20 Comments Left In the Code Informational Fixed

QSP-21 Replace Custom Linked List Implementation With Library Informational Fixed

QSP-22 Multi Recipient ERC1155 Transfer Method May Not Work Low Acknowledged

QSP-23 : Potential Proxy Implementation Not InitializableRush1155Token Undetermined Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.8.1• Slither

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

Findings

QSP-1 Owner Has Excessive Privileges Over RushToken

Severity: High Risk

FixedStatus:

File(s) affected: RushToken.sol

The address of the contract can specify a address which can imitate any address allowing the "trusted forwarder" to execute any transaction such

as token transfers on behalf of users or even transferring ownership over the contract itself. Beyond updating the "trusted forwarder" which can imitate any address the owner address can also

update the contract logic, meaning they could increase or even unlock the mint cap and even remove user's tokens. Use of an upgradeable proxy comes at the large cost of reducing

trustlessness and most likely security.

Description: owner _trustedForwarder

Recommendation:

Prevent the forwarder from being updated at all, have it set to an immutable value in the constructor or instantiate a fresh contract in the
constructor and store it

• MinimalForwarder

Evaluate whether upgradeability of the overall contract logic is necessary•

The team has fixed the issue of the trusted forwarder based on our recommendation. Only the owner / upgradeability part of the issue remains unfixed knowing that the upgradeability

of the ERC20 contract is a business requirement.

Update:

https://github.com/crytic/slither

QSP-2 Locked ETH In The Vesting Contract

Severity: Medium Risk

FixedStatus:

File(s) affected: VestingWallet.sol

The contract level comment in states this contract handles the vesting of ETH and ERC20 tokens for a given beneficiary. Accordingly, it contains a payable receive

function to accept ether. The function, however, is only able to handle ERC20 tokens and thus any ether sent to this contract will end up locked.

Description: VestingWallet
release

Recommendation:

1. Add support for vesting and releasing ether. OR

2. Remove the payable receive function to no longer accept ether.

The team has fixed the issue by removing the function.Update: receive

QSP-3 Any User Can Release Tokens

Severity: Informational

FixedStatus:

File(s) affected: VestingWallet.sol

The method allows any address to call it, but the documenting file states: "Only an admin can add an unlock config to the contract for any beneficiary and

release unlocked tokens to beneficiary".

Description: release README.md

Ensure that only the owner can call the method or clarify that any party should be able to trigger a release in the documentation.Recommendation: release

The team updated their documentation to reflect that anyone can release vested tokens.Update:

QSP-4 And Not Updated Upon Removing Vesting Party_totalTokensToBeUnlocked _unlockedIndexes

Severity: Medium Risk

FixedStatus:

File(s) affected: ContractTokenUnlockManager.sol

When a vesting account is removed from the contract by deleting its config via the method, certain variables are not updated. Specifically, the

of the account is not reset and is not decreased by the amount that was not yet released by the account. This has two significant

consequences:

Description: removeLockedAmountConfig
_unlockedIndexes _totalTokensToBeUnlocked

1. If the account gets added again, it would not be able to release tokens before the previous unlocked index

2. due to not being reduced, certain tokens would permanently be stuck in the contract upon removal._totalTokensToBeUnlocked

Have of the beneficiary be reset via and reduce by the amount the

has not yet claimed. This can be queried via the existing method.

Recommendation: _unlockedIndexes delete _unlockedIndexes[beneficiary] _tokenTokensToBeUnlocked
beneficiary getTokensToBeUnlocked

The team has removed the functionality of deleting vesting accounts.Update:

QSP-5 : Owner Can Remove / Add Vested Parties Or Drain Contract At Any TimeContractTokenUnlockManager

Severity: Medium Risk

FixedStatus:

File(s) affected: ContractTokenUnlockManager.sol

The owner address of the contract can at any time remove vested parties. Tokens that would already be subject to release are not released to

the beneficiary upon removal. This may be problematic as beneficiaries have no guarantees within the contract whether they will be able to get tokens that were allocated to them. The owner

could also at any time create a new vesting schedule that allows them to withdraw any remaining tokens in the contract.

Description: ContractTokenUnlockManager

Limit the owner addresses's ability to remove vested parties: either by removing the ability to remove vested parties altogether or by having removal require the consent of the

beneficiary.

Recommendation:

The team has fixed the issue and now the beneficiaries can no longer be removed.Update:

QSP-6 Owner Can Add Beneficiary Multiple Times

Severity: Low Risk

FixedStatus:

File(s) affected: ContractTokenUnlockManager.sol

The keeps track of all the list of beneficiaries of the contract via a counter and a linked list of beneficiaries

. However, nothing prevents the owner address from calling twice for the same beneficiary and creating a loop in the list of beneficiaries. There is

a check whether the flag of a beneficiary has been set to but it doesn't have to be set by the caller.

Description: ContractTokenUnlockManager _beneficiaryCount
_beneficiaries addLockedAmountConfig

isAdded true

Ensure that the flag is set to true in the method.Recommendation: isAdded addLockedAmountConfig

The team has fixed the issue by tracking the beneficiaries via of OpenZeppelin and duplicate entries are no longer possible.Update: EnumerableSet.AddressSet

QSP-7 Lack Of Events For Critical State Changes

Severity: Low Risk

FixedStatus:

,File(s) affected: RushToken.sol ContractSpenderManager.sol

Description:

does not emit an event when the “trusted forwarder” is changed. It is good practice to emit events on critical state changes, as it allows simpler tracking
of these changes off-chain.

• RushToken

does not emit any events when adding or removing spenders.• ContractSpenderManager

The team has fixed the issue by adding the necessary events.Exploit Scenario:

Recommendation:

: Add an event for when the “trusted forwarder” changes and have it be emitted in the method.• contracts/RushToken.sol setTrustedForwarder

: Add an event for when the “spender” changes.• contracts/ContractSpenderManager.sol

The team has resolved the issue by adding the necessary events.Update:

QSP-8 Incorrect Result In The Unlocked Tokens

Severity: Low Risk

FixedStatus:

File(s) affected: ContractTokenUnlockManager.sol

In the two parameter version of the method (L59-62) the is set as . This means that the method returns all the tokens that would be

claimable at the specified if the user hasn't claimed anything. However, certain tokens may already be released leading to the result being inaccurate.

Description: getTokensToBeUnlocked currentIndex 0
timestamp

Use the map to get the current index for the address being queried. Alternatively if including released tokens in the total is desired, this fact should be

explicitly documented as the name of the method may be misleading.

Recommendation: _unlockedIndexes

The function was renamed to to clear up the confusion.Update: getTokensVestingSchedule

QSP-9 Missing Input Verification

Severity: Low Risk

FixedStatus:

File(s) affected: VestingWallet.sol

The timestamp may be in the past upon contract deployment. This can lead to the beneficiary being able to directly access any tokens entrusted to the contract.

(VestingWallet.sol [L30])

Description: _start

Consider validating the variable and comparing it with the current time using .Recommendation: _start block.timestamp

The team has fixed the issue by verifying the variableUpdate: _start

QSP-10 Missing Address Validation

Severity: Low Risk

FixedStatus:

,File(s) affected: CustodialWallet.sol RushToken.sol

Certain functions lack a safety check in the address. The address-type argument should include a zero-address test. Otherwise, the contract's functionality may become

inaccessible.

Description:

(L44);• CustodialWallet.withdrawMoneyTo(_to)

(L52);• CustodialWallet.withdrawMoneyTo(_to)

It's recommended to further validate certain parameters, such as addresses. The concerns can be resolved by utilizing a whitelist technique or a modifier.Recommendation:

The team has fixed the issue by adding the verification for address 0.Update:

QSP-11 Incompatibility With Deflationary Tokens

Severity: Low Risk

FixedStatus:

File(s) affected: ContractUnlockTokenManager.sol

In the function , when transferring standard ERC20 deflationary tokens, the input amount may not be equal to the received amount due to the charged (and

burned) transaction fee. As a result, this may not meet the assumption behind these low-level asset-transferring routines and will bring unexpected balance inconsistencies.

Description: release (L51)

Add necessary mitigation mechanisms to keep track of accurate balances. One possibility is to query the balance before and after the transfer to compute the actual delta.Recommendation:

The team has fixed the issue by calculating the difference between before and after the transfer to the account.Update: balanceOf

QSP-12 For Loop Over Dynamic Array

Severity: Low Risk

FixedStatus:

,File(s) affected: ContractTokenUnlockManager.sol CustodialWalletFactory.sol

When smart contracts are deployed or their associated functions are invoked, the execution of these operations always consumes a certain quantity of gas, according to the

amount of computation required to accomplish them. Modifying an unknown-size array that grows in size over time can result in a Denial of Service attack. Simply by having an excessively huge

array, users can exceed the gas limit, therefore preventing the transaction from ever succeeding.

Description:

(L68);• ContractTokenUnlockManager.getTokensToBeUnlocked

Avoid actions that involve looping across the entire data structure. If you really must loop over an array of unknown size, arrange for it to consume many blocks and thus

multiple transactions.

Recommendation:

The team has fixed this issue by limiting the size of the array to be less than .Update: MAXIMUM_LOCKED_AMOUNTS

QSP-13 Owner Can Renounce Ownership

Severity: Low Risk

FixedStatus:

, ,File(s) affected: ContractSpenderManager.sol ContractUnlockTokenManager.sol CustodialWalletFactory.sol

Several contracts implement OpenZeppelin's , which by default provides the function to relinquish the ownership of the contract. In case it is never

planned that the contracts should be without an owner, we recommend overwriting this function to avoid accidentally leaving the contracts without an owner.

Description: Ownable renounceOwnership

Consider whether renouncing the ownership is a valid use case and disable the functionality by overwriting in case it is not.Recommendation: renounceOwnership

The team has fixed the issue by overriding the function to always make it revert.Update: renounceOwnership

QSP-14 Floating Pragma

Severity: Low Risk

FixedStatus:

, , , , ,

, ,

File(s) affected: ContractSpendable.sol ContractSpenderManager.sol ContractUnlockTokenManager.sol CustodialWallet.sol CustodialWalletFactory.sol
NFTToken.sol RushToken.sol VestingWallet.sol

The contract makes use of the floating-point pragma ^0.8.7. Contracts should be deployed using the same compiler version and flags that were used during the testing process.

Locking the pragma helps to ensure that contracts are not unintentionally deployed using another compiler version, such as an obsolete version, that may introduce issues in the contract

system.

Description:

Consider locking the pragma version. It is advised that floating pragma not be used in production. Both truffle-config.js and hardhat.config.js support locking the pragma

version.

Recommendation:

The team has fixed the issue by specifying a single solidity version.Update:

QSP-15 Using To Send Ether Might Reverttransfer

Severity: Low Risk

FixedStatus:

File(s) affected: CustodialWallet.sol

Usage of is discouraged since it only sends 2300 gas and might revert for some fallback functions. Refer to for details.Description: address.transfer SWC-134

Replace with a low-level .Recommendation: transfer call

The team now uses instead of the function.Update: Address.sendValue transfer

QSP-16 Approve Race

Severity: Informational

AcknowledgedStatus:

File(s) affected: RushToken.sol

The standard ERC20 implementation contains a widely-known race condition in its function, wherein a spender is able to witness the token owner broadcast a transaction

altering their approval and quickly sign and broadcast a transaction using to move the current approved amount from the owner’s balance to the spender. If the spender’s

transaction is validated before the owner’s, the spender will be able to get both approval amounts of both transactions.

Description: approve
transferFrom

Use and functions to modify the approval amount instead of using the function to modify it.Recommendation: increaseAllowance decreaseAllowance approve

The team noted that they will ensure the safer and wil be used.Update: increaseAllowance decreaseAllowanse

QSP-17 May Run Out Of GasgetBeneficiaries

Severity: Informational

FixedStatus:

File(s) affected: ContractTokenUnlockManager.sol

The method may run out of gas if the linked list of beneficiaries is very long.Description: getBeneficiaries

It is recommended to supply a version of the method where the caller can specify a number of maximum iterations and a version where the caller canRecommendation: getBeneficiaries

https://swcregistry.io/docs/SWC-134

specify a continuation index and beneficiary so that the list of beneficiaries can be queried in batches effectively.

The team has fixed the issue by limiting the size of the array.Update:

QSP-18 Duplication Of Access Control Logic

Severity: Informational

FixedStatus:

File(s) affected: ContractSpenderManager.sol

The implements its logic to track a set of addresses, so-called “spenders”. However, very similar logic is already available via the

contract from the OpenZeppelin library. Unless there are specific reasons for the re-implementation, a library should always be used for as much of a project's logic as possible.

Description: ContractSpenderManager AccessControl

The 's logic should be replaced with the inheritance from and configuration of a basic “spender” role. A similar

method can be implemented to allow easy querying whether a specific address has the spender role.

Recommendation: ContractSpenderManager AccessControl isSpender

The team has fixed the issue by using the library.Update: AccessControlEnumrable

QSP-19 Token ID Not Human Legible In Revert String

Severity: Informational

FixedStatus:

File(s) affected: NFTChildToken.sol

The revert string in L45 combines the main error message with the token ID that is being checked. However simply packing a value with will lead to

the resulting string containing a 0-byte padded 32 character string added to it with the individual bytes of the token ID interpreted as characters.

Description: uint256 abi.encodePacked

To make the token ID not be padded and human legible it is recommended to use OpenZeppelin's helper function which converts a value to its

legible string representation. This value can then be packed together with the start error message. Due to the and methods using a significant

amount of gas it is further recommended that the invocation be transformed to an structure to ensure that the formatting

and packing is only done when required. can be used if a hexadecimal representation of the token ID is preferred.

Recommendation: Strings.toString uint256
abi.encodePacked Strings.toString

require if (condition) revert(packedErrorMessage);
Strings.toHexString

The team has fixed the issue and the is no longer part of the require message.Update: token_id

QSP-20 Comments Left In the Code

Severity: Informational

FixedStatus:

File(s) affected: ContractUnlockTokenManager.sol

The function, located in the contract, contains code that is completely commented out--see L60. This is currently

dead code.

Description: getTokensToBeUnlocked ContractUnlockTokenManager

Remove the commented out code as it has no purpose.Recommendation:

The team has removed the comments.Update:

QSP-21 Replace Custom Linked List Implementation With Library

Severity: Informational

FixedStatus:

File(s) affected: ContractTokenUnlockManager.sol

The currently implements its own linked list mechanism using a mapping to track the beneficiaries. While the implementation appears to be

correct, the code would be significantly easier to understand and provide a cleaner API (e.g.) if it were to be replaced by OpenZeppelin's .

Description: ContractTokenUnlockManager
removeLockedAmountConfig EnumerableSet

Replace the custom linked list implementation with OpenZeppelin's .Recommendation: EnumerableSet.AddressSet

The custom linked list implementation has been replaced with OZ's .Update: EnumberableSet.AddressSet

QSP-22 Multi Recipient ERC1155 Transfer Method May Not Work

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: contracts/CompanyCustodialWallet.sol

The method calls the method for every recipient in its array. It does so attempting to

transfer the same list of token IDs and amounts. However, this method will fail if the wallet contract does not own at least tokens of .

Description: safeBatchTransferMultipleRecipients safeBatchTransferFrom recipients
amounts[i] * recipients.length ids[i]

If it is intended for this method to repeatedly send the same set of tokens to all recipients this should be documented. Furthermore, balance checks should be added similar to

the other methods.

Recommendation:

However, if the method is intended to send different sets and amounts of tokens to different recipients then the method should be modified to

accept multiple arrays of IDs and amounts.

safeBatchTransferMultipleRecipients

This behavior is now documented. Furthermore, no balance checks have been added, since the team argues that the additional gas required for them is too high.Update:

QSP-23 : Potential Proxy Implementation Not InitializableRush1155Token

Severity: Undetermined

https://docs.openzeppelin.com/contracts/3.x/api/utils#EnumerableSet

FixedStatus:

File(s) affected: contracts/Rush1155Token.sol

The contract inherits from the contract, implying that it is meant to be a post-constructor initializable contract (as is required by proxy

implementations), however no methods or modifiers from the library are used, and a constructor is expected to be used for initialization of the logic.

Description: Rush1155Token Initializable
Initializable ERC1155

If it was intended for the contract to be initialized post-construction the required initialization method should be implemented. If it is not intended to be used

as proxy implementation the library should not be referenced in the contract.

Recommendation: Rush1155Token
Initializable

The team did not intend for the contract to be a proxy and has removed the unnecessary import.Update:

Automated Analyses

Slither

Slither reported the following :

*MinimalForwarder.execute(MinimalForwarder.ForwardRequest,bytes) (@openzeppelin/contracts/metatx/MinimalForwarder.sol#42-58) sends eth to arbitrary user
* ERC1967UpgradeUpgradeable._functionDelegateCall(address,bytes) (@openzeppelin/contracts-upgradeable/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#208-214) uses delegatecall to a input-controlled function id

- (success,returndata) = target.delegatecall(data) (@openzeppelin/contracts-upgradeable/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#212)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#controlled-delegatecall
, which we classified as false positives.

Adherence to Specification

1.The method allows any address to call it, but the documenting file states: "Only an admin can add an unlock config to the contract for any

beneficiary and release unlocked tokens to beneficiary".

release README.md

Code Documentation

The comment in states that the "default implementation is a linear vesting curve" when in reality it is a vesting cliff that releases all tokens at
once after the lock period has passed.

• VestingWallet.sol

does not contain a single comment as to what it does or how it works. It is also not mentioned at all in the README
file.

• contracts/ContractTokenUnlockManager.sol

Adherence to Best Practices

1. General project settings: Lack of optimizer. It is recommended the solidity optimizer be enabled for the final compilation of contracts prior to deployment. [Unresolved]

2. General project settings: Lack of linter and fixer. It is recommended that a linter such as be used to ensure that files are consistently formatted. Solidity code

can be automatically formatted using the help of the package, for example. [Unresolved]

solhint
prettier-plugin-solidity

3. : Implicit visibility. The and properties do not have an explicit visibility. It is recommended their

visibility whether / / be defined explicitly for the sake of transparency and clarity. [Fixed]

contracts/CustodialWalletFactory.sol beacon spenderManager
internal private public

4. Use of OpenZeppelin for simple counter. While there's nothing fundamentally wrong with using OpenZeppelin's , it isn't very efficient. Making

variables into simple variables and incrementing them in an context will save gas. Files where is used :

(L22), (L14) [fixed]

Counter Counter Counter
uint256 unchecked Counter

contracts/CustodialWalletFactory.sol contracts/NFTToken.sol

5. : Batching method (L42-47) could be optimized. While simply calling multiple times

reduces complexity, the batching of wallet creation could be made more efficient. By bringing the wallet creation logic into the the

variable only needs to be written once at the end of the loop. Furthermore, the constructor data

only needs to be encoded once and could then be reused. Another advantage is that the modifier only needs to run once for the

method, instead of being repeatedly run for every iteration of the for-loop. [Fixed]

contracts/CustodialWalletFactory.sol createWalletBatch createWallet
createWalletBatch _walletId

abi.encodeWithSelector(CustodialWallet.initialize.selector,
spenderManager) onlyTransactor
createWalletBatch

6. : L10: Use of deprecated method. According to OpenZeppelin's documentation, the method is deprecated

in favor of ().[Fixed]

contracts/TransactorControl.sol _setupRole _setupRole
_grantRole source

7. : L61: method defined as external despite being used internally. If an external / public method needs to be called

from within the contract defining it it should be defined as in order to save gas. [Mitigated]

contracts/NFTChildToken.sol encodeTokenMetadata
public

8. : L35-49: The forwarder accepting and methods are reimplemented instead of being inherited from the

contract provided by OpenZeppelin which contains identical methods. [Unresolved]

contracts/RushToken.sol _msgSender _msgData
ERC2771Context

9. : L21-22, L27, L29-30, L74-75, L82-83: Use of integer types smaller than 256 bits. No storage packing is being leveraged here meaning

the use of integer types which are smaller than 256 bits such as will only lead to more gas being used overall. It is recommended that the use of be

replaced with throughout the contract. [Fixed]

contracts/VestingWallet.sol
uint64 uint64

uint256

10. : Implicit library import. While OpenZeppelin's library is indirectly brought into the context of the file via the

import of it is recommended that library imports be more explicit by adding an import statement. [Fixed]

contracts/ContractTokenUnlockManager.sol Address
SafeERC20

11. : Private method names and do not follow naming convention.

They are defined as having visibility (L64 , L96) but they don't have a leading underscore. It is recommended to keep naming conventions consistent

throughout a project. The and methods should either be made public or a leading underscore should be added.

[Fixed]

contracts/ContractTokenUnlockManager.sol getTokensToBeUnlocked isLockedAmountConfigValid
private

getTokensToBeUnlocked isLockedAmountConfigValid

12. : L96-113: Optimization possible. The output of the method is whenever either

or become due to the final logical and (L112). Instead of storing these states in two variables, the method can directly

return instead of first setting them to . The method would return if it reaches the end. Furthermore, the repeated check (L105) can be removed

if the for-loop runs for iterations, one additional check would have to be added. With another small

optimization. [Fixed] The method body would look something like this:

contracts/ContractTokenUnlockManager.sol isLockedAmountConfigValid false
isAmountValid isUnlockScheduleValid false

false false true idx > 0
lockedAmounts.length - 1 lockedAmounts[idx].amount == 0

uint256 lastIndex = lockedAmounts.length - 1;

for (uint256 idx = 0; idx < lastIndex;) {

if (lockedAmounts[idx].amount == 0) {

return false;

https://docs.openzeppelin.com/contracts/4.x/api/access#AccessControl-_setupRole-bytes32-address-

}

}

if (lockedAmounts[lastIndex].amount == 0) return false;

return true;

// unchecked block to reduce `++idx` gas usage

unchecked {

if (lockedAmounts[idx].unlockTime > lockedAmounts[++idx].unlockTime) {

return false;

}

}

13. Event names should start with a capital letter. See events and .

[Fixed]

contracts/ContractTokenUnlockManager.sol unlockTokenConfigAdded unlockTokenConfigRemoved

14. Use for in since it is only changed in the constructor. [Fixed]immutable _distributionToken contracts/ContractTokenUnlockManager.sol

15. Declare as to avoid having to cast it on every use in . [Fixed]_distributionToken IERC20 contracts/ContractTokenUnlockManager.sol

16. : Repeated checks in sub-calls. The and methods

repeatedly trigger other calls in their for-loops. These methods repeat checks such as or checks already checked by the parent

method. Batch calling methods should refrain from calling high-level methods and instead call “lower level” methods such as the token transfer methods directly so that

unused checks can be omitted. [Unresolved]

contracts/CompanyCustodialWallet.sol safeBatchTransferMultipleRecipients batchTransferERC20
onlySpender Address.isContract

17. : Unnecessary use of parameters. The and methods both accept a

parameter, only for it to later be converted to a . Due to their being no difference in how solidity treats and types, it is recommended that

be directly used. [Unresolved]

contracts/NFTRootToken.sol bytes mint(uint256,uint256,bytes) setTokenMetadata bytes
string bytes string string

18. : L10-12: Reimplementation of library logic. The highlighted lines can be replaced with a call to OpenZeppelin's

as it implements the same checks and calls. [Fixed]

contracts/WalletExecutor.sol
Address.functionCall

Test Results

Test Suite Results

npx truffle test

Contract: ContractUnlockTokenManager
Deploying TokenUnlockManager

√ Invalid distribution token (523ms)
Adding Locked Amount Configs

√ rejects zero address for beneficiary (189ms)
√ rejects invalid locked amount config with zero amount (257ms)
√ rejects invalid locked amount config with wrong unlock time (220ms)
√ add valid locked amount config (282ms)
√ add config from non owner (200ms)
√ adding valid locked amount config (855ms)
√ rejects already added beneficiary (194ms)

Release Tokens
√ rejects zero address for beneficiary (164ms)
√ transferring tokens to a beneficiary who is not added yet (189ms)
√ Release tokens for added beneficiary by owner (1869ms)

Removing Locked Amount Configs
√ rejects zero address for beneficiary (160ms)
√ rejects non existent beneficiary (176ms)
√ remove config from non owner (209ms)
√ previous beneficiary not pointing to correct beneficiary (195ms)
√ remove locked amount config (325ms)

Contract: CompanyCustodialWallet
batch transfer ERC20

√ ERC20 batch transfer using non spender (240ms)
√ ERC20 batch transfer invalid contract address (208ms)
√ ERC20 batch transfer no recipients (172ms)
√ ERC20 batch transfer no amounts (267ms)
√ ERC20 batch transfer difference in recipients and amounts (204ms)
√ ERC20 batch transfer insufficient balance (205ms)
√ ERC20 batch transfer via valid spender (577ms)

batch transfer ERC1155 from
√ ERC1155 batch transfer using non spender (282ms)
√ ERC1155 batch transfer invalid contract address (220ms)
√ ERC1155 batch transfer no ids (267ms)
√ ERC1155 batch transfer no amounts (254ms)
√ ERC1155 batch transfer using valid spender (522ms)

batch transfer ERC1155 multiple recipients
√ ERC1155 batch transfer using non spender (391ms)
√ ERC1155 batch transfer invalid contract address (254ms)
√ ERC1155 batch transfer no ids (194ms)
√ ERC1155 batch transfer no amounts (192ms)
√ ERC1155 batch transfer no recipients (242ms)
√ ERC1155 batch transfer using valid spender (1023ms)

Contract: ContractSpenderManager
Add spender
√ Not able to add spender account from non-owner (209ms)
√ Not able to add non-valid address (194ms)
√ Able to add spender account from owner (288ms)

Remove spender
√ Not able to remove spender account from non-owner (227ms)
√ Able to remove spender account from owner (239ms)

Contract: CustodialWalletFactory
Getting beacon address from factory

√ Non owner should not be allowed (74ms)
√ Valid address for beacon (77ms)

deploy invalid config
√ Invalid initial implementation (268ms)
√ Invalid spender implementation (267ms)
√ Invalid nft token implementation (345ms)

Create wallet
√ Wallet id should start from 0 (46ms)
√ Get current implementation (76ms)
√ Create wallet from non-owner (142ms)
√ Create wallet from owner (531ms)

Create wallet in batch
√ Create wallet in batch from non-transactor (217ms)
√ Create wallet with zero size batch (184ms)
√ Create wallet in batch using transactor (2014ms)

Create wallet and mint nft in batch
√ Create wallet and mint nft in batch from non-transactor (201ms)
√ Create wallet with zero size batch (235ms)
√ Create wallet and mint nft in batch using transactor (4011ms)

Update Wallet Implementation
√ Update invalid implementation (184ms)
√ Update implementation from a non owner (203ms)
√ Update implementation from owner (976ms)

Contract: CustodialWallet
Initializing custodial wallet

√ Cannot be initialized with invalid contractSpender (368ms)
Native currency
√ balance should be 0 by default (50ms)
√ able to send to contract (174ms)
√ non spender shouldn't be able to withdraw money (257ms)
√ spender shouldn't be able to withdraw more than balance (433ms)
√ spender should be able to withdraw money (446ms)

ERC20
√ mint ERC20 (396ms)
√ withDraw ERC20 using non-spender (201ms)
√ withDraw invalid ERC20 using spender (181ms)
√ withDraw ERC20 more than balance using spender (222ms)
√ withDraw ERC20 using spender (639ms)

ERC721

√ mint ERC721 (459ms)
√ withDraw ERC721 using non-spender (476ms)
√ withDraw invalid ERC721 using spender (408ms)
√ withDraw ERC721 from a non owner using spender (449ms)
√ withDraw ERC721 from a owner using spender (690ms)

ERC1155
√ balance should be 0 by default (93ms)
√ able to send to contract (328ms)
√ non spender shouldn't be able to withdraw money (353ms)
√ token should be a valid address (388ms)
√ spender shouldn't be able to withdraw more than balance (474ms)
√ spender should be able to withdraw tokens (588ms)

Contract: ERC1155
like an ERC1155
balanceOf

√ reverts when queried about the zero address (60ms)
when accounts don't own tokens

√ returns zero for given addresses (193ms)
when accounts own some tokens
√ returns the amount of tokens owned by the given addresses (189ms)

balanceOfBatch
√ reverts when input arrays don't match up (157ms)
√ reverts when one of the addresses is the zero address (92ms)
when accounts don't own tokens
√ returns zeros for each account (97ms)

when accounts own some tokens
√ returns amounts owned by each account in order passed (78ms)
√ returns multiple times the balance of the same address when asked (95ms)

setApprovalForAll
√ sets approval status which can be queried via isApprovedForAll (46ms)
√ emits an ApprovalForAll log
√ can unset approval for an operator (222ms)
√ reverts if attempting to approve self as an operator (236ms)

safeTransferFrom
√ reverts when transferring more than balance (237ms)
√ reverts when transferring to zero address (200ms)
when called by the multiTokenHolder
√ debits transferred balance from sender (63ms)
√ credits transferred balance to receiver
√ emits a TransferSingle log
√ preserves existing balances which are not transferred by multiTokenHolder (140ms)

when called by an operator on behalf of the multiTokenHolder
when operator is not approved by multiTokenHolder
√ reverts (192ms)

when operator is approved by multiTokenHolder
√ debits transferred balance from sender (61ms)
√ credits transferred balance to receiver (75ms)
√ emits a TransferSingle log
√ preserves operator's balances not involved in the transfer (110ms)

when sending to a valid receiver
without data
√ debits transferred balance from sender (94ms)
√ credits transferred balance to receiver (74ms)
√ emits a TransferSingle log
√ calls onERC1155Received

with data
√ debits transferred balance from sender (76ms)
√ credits transferred balance to receiver (91ms)
√ emits a TransferSingle log
√ calls onERC1155Received

to a receiver contract returning unexpected value
√ reverts (319ms)

to a receiver contract that reverts
√ reverts (335ms)

to a contract that does not implement the required function
√ reverts (395ms)

safeBatchTransferFrom
√ reverts when transferring amount more than any of balances (282ms)
√ reverts when ids array length doesn't match amounts array length (424ms)
√ reverts when transferring to zero address (186ms)
when called by the multiTokenHolder

√ debits transferred balances from sender (60ms)
√ credits transferred balances to receiver (75ms)
√ emits a TransferBatch log

when called by an operator on behalf of the multiTokenHolder
when operator is not approved by multiTokenHolder
√ reverts (202ms)

when operator is approved by multiTokenHolder
√ debits transferred balances from sender (92ms)
√ credits transferred balances to receiver (92ms)
√ emits a TransferBatch log
√ preserves operator's balances not involved in the transfer (126ms)

when sending to a valid receiver
without data

√ debits transferred balances from sender (77ms)
√ credits transferred balances to receiver (62ms)
√ emits a TransferBatch log
√ calls onERC1155BatchReceived

with data
√ debits transferred balances from sender (62ms)
√ credits transferred balances to receiver (110ms)
√ emits a TransferBatch log
√ calls onERC1155Received

to a receiver contract returning unexpected value
√ reverts (286ms)

to a receiver contract that reverts
√ reverts (367ms)

to a receiver contract that reverts only on single transfers
√ debits transferred balances from sender (94ms)
√ credits transferred balances to receiver (62ms)
√ emits a TransferBatch log
√ calls onERC1155BatchReceived

to a contract that does not implement the required function
√ reverts (377ms)

Contract interface
ERC165

ERC165's supportsInterface(bytes4)
√ uses less than 30k gas (204ms)
√ claims support (109ms)

supportsInterface(bytes4)
√ has to be implemented

ERC1155
ERC165's supportsInterface(bytes4)

√ uses less than 30k gas (244ms)
√ claims support (77ms)

balanceOf(address,uint256)
√ has to be implemented

balanceOfBatch(address[],uint256[])
√ has to be implemented

setApprovalForAll(address,bool)
√ has to be implemented

isApprovedForAll(address,address)
√ has to be implemented

safeTransferFrom(address,address,uint256,uint256,bytes)
√ has to be implemented

safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)
√ has to be implemented

internal functions
_mint
√ reverts with a zero destination address (175ms)
with minted tokens

√ emits a TransferSingle event
√ credits the minted amount of tokens (46ms)

_mintBatch
√ reverts with a zero destination address (173ms)
√ reverts if length of inputs do not match (414ms)
with minted batch of tokens
√ emits a TransferBatch event
√ credits the minted batch of tokens (79ms)

_burn
√ reverts when burning the zero account's tokens (205ms)
√ reverts when burning a non-existent token id (177ms)
√ reverts when burning more than available tokens (350ms)
with minted-then-burnt tokens

√ emits a TransferSingle event
√ accounts for both minting and burning (89ms)

_burnBatch
√ reverts when burning the zero account's tokens (171ms)
√ reverts if length of inputs do not match (435ms)
√ reverts when burning a non-existent token id (188ms)
with minted-then-burnt tokens
√ emits a TransferBatch event
√ accounts for both minting and burning (124ms)

ERC1155MetadataURI
√ emits no URI event in constructor
√ sets the initial URI for all token types (141ms)
_setURI

√ emits no URI event (144ms)
√ sets the new URI for all token types (411ms)

Contract: ERC1155Supply
before mint

√ exist (79ms)
√ totalSupply (79ms)

after mint

single
√ exist (59ms)
√ totalSupply (63ms)

batch
√ exist (124ms)
√ totalSupply (150ms)

after burn
single

√ exist (62ms)
√ totalSupply (69ms)

batch
√ exist (124ms)
√ totalSupply (123ms)

Contract: ERC20Capped
once deployed

capped token
√ starts with the correct cap (76ms)
√ mints when amount is less than cap (346ms)
√ fails to mint if the amount exceeds the cap (450ms)
√ fails to mint after cap is reached (399ms)

Contract: ERC721
Contract interface

ERC165
ERC165's supportsInterface(bytes4)

√ uses less than 30k gas (171ms)
√ claims support (62ms)

supportsInterface(bytes4)
√ has to be implemented

ERC721
ERC165's supportsInterface(bytes4)
√ uses less than 30k gas (86ms)
√ claims support (65ms)

balanceOf(address)
√ has to be implemented

ownerOf(uint256)
√ has to be implemented

approve(address,uint256)
√ has to be implemented

getApproved(uint256)
√ has to be implemented

setApprovalForAll(address,bool)
√ has to be implemented

isApprovedForAll(address,address)
√ has to be implemented

transferFrom(address,address,uint256)
√ has to be implemented

safeTransferFrom(address,address,uint256)
√ has to be implemented

safeTransferFrom(address,address,uint256,bytes)
√ has to be implemented

with minted tokens
balanceOf
when the given address owns some tokens

√ returns the amount of tokens owned by the given address (90ms)
when the given address does not own any tokens

√ returns 0 (45ms)
when querying the zero address

√ throws
ownerOf
when the given token ID was tracked by this token

√ returns the owner of the given token ID (76ms)
when the given token ID was not tracked by this token
√ reverts

transfers
via transferFrom

when called by the owner
√ transfers the ownership of the given token ID to the given address (44ms)
√ emits a Transfer event
√ clears the approval for the token ID (62ms)
√ emits an Approval event
√ adjusts owners balances (63ms)
√ adjusts owners tokens by index (140ms)

when called by the approved individual
√ transfers the ownership of the given token ID to the given address (93ms)
√ emits a Transfer event
√ clears the approval for the token ID (63ms)
√ emits an Approval event
√ adjusts owners balances (45ms)
√ adjusts owners tokens by index (156ms)

when called by the operator
√ transfers the ownership of the given token ID to the given address (74ms)
√ emits a Transfer event
√ clears the approval for the token ID (63ms)
√ emits an Approval event
√ adjusts owners balances (59ms)
√ adjusts owners tokens by index (206ms)

when called by the owner without an approved user
√ transfers the ownership of the given token ID to the given address (77ms)
√ emits a Transfer event
√ clears the approval for the token ID (73ms)
√ emits an Approval event
√ adjusts owners balances (77ms)
√ adjusts owners tokens by index (141ms)

when sent to the owner
√ keeps ownership of the token
√ clears the approval for the token ID (59ms)
√ emits only a transfer event
√ keeps the owner balance (62ms)
√ keeps same tokens by index (155ms)

when the address of the previous owner is incorrect
√ reverts (219ms)

when the sender is not authorized for the token id
√ reverts (204ms)

when the given token ID does not exist
√ reverts (186ms)

when the address to transfer the token to is the zero address
√ reverts (193ms)

via safeTransferFrom
with data
to a user account

when called by the owner
√ transfers the ownership of the given token ID to the given address (57ms)
√ emits a Transfer event
√ clears the approval for the token ID (89ms)
√ emits an Approval event
√ adjusts owners balances (59ms)
√ adjusts owners tokens by index (150ms)

when called by the approved individual
√ transfers the ownership of the given token ID to the given address (92ms)
√ emits a Transfer event
√ clears the approval for the token ID (74ms)
√ emits an Approval event
√ adjusts owners balances (62ms)
√ adjusts owners tokens by index (171ms)

when called by the operator
√ transfers the ownership of the given token ID to the given address (94ms)
√ emits a Transfer event
√ clears the approval for the token ID (62ms)
√ emits an Approval event
√ adjusts owners balances (108ms)
√ adjusts owners tokens by index (157ms)

when called by the owner without an approved user
√ transfers the ownership of the given token ID to the given address (75ms)
√ emits a Transfer event
√ clears the approval for the token ID (76ms)
√ emits an Approval event
√ adjusts owners balances (76ms)
√ adjusts owners tokens by index (122ms)

when sent to the owner
√ keeps ownership of the token (94ms)
√ clears the approval for the token ID (45ms)
√ emits only a transfer event
√ keeps the owner balance (76ms)
√ keeps same tokens by index (173ms)

when the address of the previous owner is incorrect
√ reverts (155ms)

when the sender is not authorized for the token id
√ reverts (269ms)

when the given token ID does not exist
√ reverts (204ms)

when the address to transfer the token to is the zero address
√ reverts (189ms)

to a valid receiver contract
√ calls onERC721Received (295ms)
√ calls onERC721Received from approved (224ms)
when called by the owner
√ transfers the ownership of the given token ID to the given address (62ms)
√ emits a Transfer event
√ clears the approval for the token ID (92ms)
√ emits an Approval event
√ adjusts owners balances (61ms)
√ adjusts owners tokens by index (179ms)

when called by the approved individual
√ transfers the ownership of the given token ID to the given address (46ms)

√ emits a Transfer event
√ clears the approval for the token ID (62ms)
√ emits an Approval event
√ adjusts owners balances (76ms)
√ adjusts owners tokens by index (155ms)

when called by the operator
√ transfers the ownership of the given token ID to the given address (104ms)
√ emits a Transfer event
√ clears the approval for the token ID (91ms)
√ emits an Approval event
√ adjusts owners balances (78ms)
√ adjusts owners tokens by index (170ms)

when called by the owner without an approved user
√ transfers the ownership of the given token ID to the given address (60ms)
√ emits a Transfer event
√ clears the approval for the token ID (60ms)
√ emits an Approval event
√ adjusts owners balances (74ms)
√ adjusts owners tokens by index (154ms)

when sent to the owner
√ keeps ownership of the token (45ms)
√ clears the approval for the token ID (76ms)
√ emits only a transfer event
√ keeps the owner balance (78ms)
√ keeps same tokens by index (142ms)

when the address of the previous owner is incorrect
√ reverts (212ms)

when the sender is not authorized for the token id
√ reverts (268ms)

when the given token ID does not exist
√ reverts (224ms)

when the address to transfer the token to is the zero address
√ reverts (178ms)

with an invalid token id
√ reverts (221ms)

without data
to a user account

when called by the owner
√ transfers the ownership of the given token ID to the given address (76ms)
√ emits a Transfer event
√ clears the approval for the token ID (89ms)
√ emits an Approval event
√ adjusts owners balances (77ms)
√ adjusts owners tokens by index (153ms)

when called by the approved individual
√ transfers the ownership of the given token ID to the given address (76ms)
√ emits a Transfer event
√ clears the approval for the token ID (110ms)
√ emits an Approval event
√ adjusts owners balances (71ms)
√ adjusts owners tokens by index (143ms)

when called by the operator
√ transfers the ownership of the given token ID to the given address (78ms)
√ emits a Transfer event
√ clears the approval for the token ID (90ms)
√ emits an Approval event
√ adjusts owners balances (60ms)
√ adjusts owners tokens by index (136ms)

when called by the owner without an approved user
√ transfers the ownership of the given token ID to the given address (76ms)
√ emits a Transfer event
√ clears the approval for the token ID (77ms)
√ emits an Approval event
√ adjusts owners balances (93ms)
√ adjusts owners tokens by index (204ms)

when sent to the owner
√ keeps ownership of the token (78ms)
√ clears the approval for the token ID (76ms)
√ emits only a transfer event
√ keeps the owner balance (49ms)
√ keeps same tokens by index (158ms)

when the address of the previous owner is incorrect
√ reverts (172ms)

when the sender is not authorized for the token id
√ reverts (237ms)

when the given token ID does not exist
√ reverts (184ms)

when the address to transfer the token to is the zero address
√ reverts (171ms)

to a valid receiver contract
√ calls onERC721Received (317ms)
√ calls onERC721Received from approved (333ms)
when called by the owner
√ transfers the ownership of the given token ID to the given address (92ms)
√ emits a Transfer event
√ clears the approval for the token ID (91ms)
√ emits an Approval event
√ adjusts owners balances (76ms)
√ adjusts owners tokens by index (189ms)

when called by the approved individual
√ transfers the ownership of the given token ID to the given address (78ms)
√ emits a Transfer event
√ clears the approval for the token ID (91ms)
√ emits an Approval event
√ adjusts owners balances (45ms)
√ adjusts owners tokens by index (125ms)

when called by the operator
√ transfers the ownership of the given token ID to the given address (94ms)
√ emits a Transfer event
√ clears the approval for the token ID (61ms)
√ emits an Approval event
√ adjusts owners balances (78ms)
√ adjusts owners tokens by index (189ms)

when called by the owner without an approved user
√ transfers the ownership of the given token ID to the given address (104ms)
√ emits a Transfer event
√ clears the approval for the token ID (92ms)
√ emits an Approval event
√ adjusts owners balances (61ms)
√ adjusts owners tokens by index (156ms)

when sent to the owner
√ keeps ownership of the token (109ms)
√ clears the approval for the token ID (62ms)
√ emits only a transfer event
√ keeps the owner balance (77ms)
√ keeps same tokens by index (172ms)

when the address of the previous owner is incorrect
√ reverts (209ms)

when the sender is not authorized for the token id
√ reverts (226ms)

when the given token ID does not exist
√ reverts (241ms)

when the address to transfer the token to is the zero address
√ reverts (208ms)

with an invalid token id
√ reverts (202ms)

to a receiver contract returning unexpected value
√ reverts (470ms)

to a receiver contract that reverts with message
√ reverts (485ms)

to a receiver contract that reverts without message
√ reverts (741ms)

to a receiver contract that panics
√ reverts (693ms)

to a contract that does not implement the required function
√ reverts (444ms)

safe mint
via safeMint

√ calls onERC721Received — with data (511ms)
√ calls onERC721Received — without data (458ms)
to a receiver contract returning unexpected value
√ reverts (639ms)

to a receiver contract that reverts with message
√ reverts (618ms)

to a receiver contract that reverts without message
√ reverts (568ms)

to a receiver contract that panics
√ reverts (713ms)

to a contract that does not implement the required function
√ reverts (415ms)

approve
when clearing approval

when there was no prior approval
√ clears approval for the token (98ms)
√ emits an approval event

when there was a prior approval
√ clears approval for the token (92ms)
√ emits an approval event

when approving a non-zero address
when there was no prior approval
√ sets the approval for the target address (93ms)
√ emits an approval event

when there was a prior approval to the same address
√ sets the approval for the target address (108ms)
√ emits an approval event

when there was a prior approval to a different address

√ sets the approval for the target address (110ms)
√ emits an approval event

when the address that receives the approval is the owner
√ reverts (238ms)

when the sender does not own the given token ID
√ reverts (144ms)

when the sender is approved for the given token ID
√ reverts (475ms)

when the sender is an operator
√ sets the approval for the target address (109ms)
√ emits an approval event

when the given token ID does not exist
√ reverts (216ms)

setApprovalForAll
when the operator willing to approve is not the owner

when there is no operator approval set by the sender
√ approves the operator (287ms)
√ emits an approval event (146ms)

when the operator was set as not approved
√ approves the operator (251ms)
√ emits an approval event (159ms)
√ can unset the operator approval (218ms)

when the operator was already approved
√ keeps the approval to the given address (268ms)
√ emits an approval event (187ms)

when the operator is the owner
√ reverts (219ms)

getApproved
when token is not minted

√ reverts (60ms)
when token has been minted
√ should return the zero address (77ms)
when account has been approved

√ returns approved account (140ms)
_mint(address, uint256)
√ reverts with a null destination address (208ms)
with minted token

√ emits a Transfer event
√ creates the token (157ms)
√ reverts when adding a token id that already exists (190ms)

_burn
√ reverts when burning a non-existent token id (188ms)
with minted tokens

with burnt token
√ emits a Transfer event
√ emits an Approval event
√ deletes the token (185ms)
√ reverts when burning a token id that has been deleted (281ms)

Contract interface
ERC721Metadata

ERC165's supportsInterface(bytes4)
√ uses less than 30k gas (206ms)
√ claims support (108ms)

name()
√ has to be implemented

symbol()
√ has to be implemented

tokenURI(uint256)
√ has to be implemented

metadata
√ has a name (109ms)
√ has a symbol (111ms)
token URI
√ return empty string by default (92ms)
√ reverts when queried for non existent token id (92ms)
base URI
√ base URI can be set (331ms)
√ base URI is added as a prefix to the token URI (379ms)
√ token URI can be changed by changing the base URI (479ms)

Contract interface
ERC721Enumerable

ERC165's supportsInterface(bytes4)
√ uses less than 30k gas (271ms)
√ claims support (93ms)

totalSupply()
√ has to be implemented

tokenOfOwnerByIndex(address,uint256)
√ has to be implemented

tokenByIndex(uint256)
√ has to be implemented

with minted tokens
totalSupply
√ returns total token supply (75ms)

tokenOfOwnerByIndex
when the given index is lower than the amount of tokens owned by the given address

√ returns the token ID placed at the given index (107ms)
when the index is greater than or equal to the total tokens owned by the given address
√ reverts (108ms)

when the given address does not own any token
√ reverts (76ms)

after transferring all tokens to another user
√ returns correct token IDs for target (268ms)
√ returns correct token IDs for owner (173ms)
√ returns empty collection for original owner (188ms)

tokenByIndex
√ returns all tokens (126ms)
√ reverts if index is greater than supply (77ms)
√ returns all tokens after burning token 5042 and minting new tokens (1223ms)
√ returns all tokens after burning token 79217 and minting new tokens (1043ms)

_mint(address, uint256)
√ reverts with a null destination address (193ms)
with minted token
√ adjusts owner tokens by index (139ms)
√ adjusts all tokens list (126ms)

_burn
√ reverts when burning a non-existent token id (252ms)
with minted tokens

with burnt token
√ removes that token from the token list of the owner (94ms)
√ adjusts all tokens list (123ms)
√ burns all tokens (343ms)

Contract: ERC20
√ has a name (78ms)
√ has a symbol (46ms)
√ has 18 decimals (64ms)
total supply
√ returns the total amount of tokens (62ms)

balanceOf
when the requested account has no tokens
√ returns zero (44ms)

when the requested account has some tokens
√ returns the total amount of tokens (76ms)

transfer
when the recipient is not the zero address

when the sender does not have enough balance
√ reverts (205ms)

when the sender transfers all balance
√ transfers the requested amount (310ms)
√ emits a transfer event (157ms)

when the sender transfers zero tokens
√ transfers the requested amount (333ms)
√ emits a transfer event (138ms)

when the recipient is the zero address
√ reverts (217ms)

transfer from
when the token owner is not the zero address

when the recipient is not the zero address
when the spender has enough approved balance
when the token owner has enough balance

√ transfers the requested amount (395ms)
√ decreases the spender allowance (238ms)
√ emits a transfer event (175ms)
√ emits an approval event (267ms)

when the token owner does not have enough balance
√ reverts (222ms)

when the spender does not have enough approved balance
when the token owner has enough balance
√ reverts (237ms)

when the token owner does not have enough balance
√ reverts (190ms)

when the recipient is the zero address
√ reverts (252ms)

when the token owner is the zero address
√ reverts (249ms)

approve
when the spender is not the zero address

when the sender has enough balance
√ emits an approval event (158ms)
when there was no approved amount before
√ approves the requested amount (266ms)

when the spender had an approved amount
√ approves the requested amount and replaces the previous one (265ms)

when the sender does not have enough balance
√ emits an approval event (159ms)
when there was no approved amount before

√ approves the requested amount (262ms)
when the spender had an approved amount
√ approves the requested amount and replaces the previous one (266ms)

when the spender is the zero address
√ reverts (206ms)

decrease allowance
when the spender is not the zero address

when the sender has enough balance
when there was no approved amount before
√ reverts (238ms)

when the spender had an approved amount
√ emits an approval event (135ms)
√ decreases the spender allowance subtracting the requested amount (268ms)
√ sets the allowance to zero when all allowance is removed (222ms)
√ reverts when more than the full allowance is removed (254ms)

when the sender does not have enough balance
when there was no approved amount before
√ reverts (219ms)

when the spender had an approved amount
√ emits an approval event (173ms)
√ decreases the spender allowance subtracting the requested amount (283ms)
√ sets the allowance to zero when all allowance is removed (282ms)
√ reverts when more than the full allowance is removed (233ms)

when the spender is the zero address
√ reverts (205ms)

increase allowance
when the spender is not the zero address

when the sender has enough balance
√ emits an approval event (204ms)
when there was no approved amount before
√ approves the requested amount (252ms)

when the spender had an approved amount
√ increases the spender allowance adding the requested amount (237ms)

when the sender does not have enough balance
√ emits an approval event (172ms)
when there was no approved amount before
√ approves the requested amount (204ms)

when the spender had an approved amount
√ increases the spender allowance adding the requested amount (235ms)

when the spender is the zero address
√ reverts (235ms)

_mint
√ rejects a null account (220ms)
for a non zero account
√ increments totalSupply (77ms)
√ increments recipient balance (94ms)
√ emits Transfer event

Contract: ERC721URIStorage
token URI
√ it is empty by default (63ms)
√ reverts when queried for non existent token id (75ms)
√ can be set for a token id (204ms)
√ reverts when setting for non existent token id (222ms)
√ base URI can be set (236ms)
√ base URI is added as a prefix to the token URI (456ms)
√ token URI can be changed by changing the base URI (711ms)
√ tokenId is appended to base URI for tokens with no URI (248ms)
√ tokens without URI can be burnt (359ms)
√ tokens with URI can be burnt (557ms)

Contract: ERC20Permit
√ initial nonce is 0 (78ms)
√ domain separator (83ms)
permit
√ accepts owner signature (269ms)
√ rejects reused signature (373ms)
√ rejects other signature (300ms)
√ rejects expired permit (205ms)

Contract: HikeTokenUUPSUpgradeableMock
√ upgrade to upgradeable implementation (575ms)
√ upgrade to upgradeable implementation with call (872ms)
√ upgrade to and unsafe upgradeable implementation (440ms)
√ reject upgrade to broken upgradeable implementation (556ms)
√ reject upgrade to non uups implementation (555ms)
√ reject proxy address as implementation (2264ms)

Contract: ERC20Votes
√ initial nonce is 0 (63ms)
√ domain separator (81ms)
√ minting restriction (224ms)
set delegation

call
√ delegation with balance (971ms)
√ delegation without balance (325ms)

with signature
√ accept signed delegation (575ms)
√ rejects reused signature (436ms)
√ rejects bad delegatee (187ms)
√ rejects bad nonce (216ms)
√ rejects expired permit (217ms)

change delegation
√ call (884ms)

transfers
√ no delegation (139ms)
√ sender delegation (311ms)
√ receiver delegation (434ms)
√ full delegation (654ms)

Compound test suite
balanceOf

√ grants to initial account (74ms)
numCheckpoints
√ returns the number of checkpoints for a delegate (2210ms)

getPastVotes
√ reverts if block number >= current block (60ms)
√ returns 0 if there are no checkpoints (76ms)
√ returns the latest block if >= last checkpoint block (540ms)
√ returns zero if < first checkpoint block (584ms)
√ generally returns the voting balance at the appropriate checkpoint (2209ms)

getPastTotalSupply
√ reverts if block number >= current block (76ms)
√ returns 0 if there are no checkpoints (75ms)
√ returns the latest block if >= last checkpoint block (587ms)
√ returns zero if < first checkpoint block (602ms)
√ generally returns the voting balance at the appropriate checkpoint (1298ms)

Contract: ERC2771Context
√ not able to set forwader other than owner (221ms)
√ recognize trusted forwarder (81ms)
when called directly
msgSender

√ returns the transaction sender when called from an EOA (162ms)
√ returns the transaction sender when from another contract (198ms)

msgData
√ returns the transaction data when called from an EOA (132ms)
√ returns the transaction sender when from another contract (224ms)

when receiving a relayed call
msgSender
√ returns the relayed transaction original sender (493ms)

msgData
√ returns the relayed transaction original data (356ms)

Contract: ERC721Root
Mint tokens

√ mint tokens from non predicate
√ mint tokens from predicate (381ms)

Mint tokens with metadata
√ mint tokens from non predicate
√ mint tokens from predicate (391ms)

Contract: NFTChildToken
Safe mint

√ only transactor can safe mint tokens (174ms)
√ safe minting to happen in autoincrement number (283ms)
√ only transactor can safe batch mint tokens (203ms)
√ Safe batch mint can only for more than 0 addreses (234ms)
√ safe minting to happen in batch (1880ms)

Should mint token on deposit
√ ChildChainManagerProxy can make deposit tx (397ms)
√ Deposit called by non depositor account (267ms)

Should burn token on withdraw
√ Should not allow to withdraw token not owner by user (601ms)
√ Should burn token on withdraw (598ms)
√ Should burn token on withdraw for second time (1091ms)

Should mint tokens on batch deposit
√ ChildChainManagerProxy can make batch deposit tx (809ms)

Should burn tokens on batch withdraw
√ should not allow batch withdraw more than batchSize (220ms)
√ Should not allow to withdraw token not owner by user (606ms)
√ User should be allowed to withdraw in batch (1256ms)

Withdraw tokens with metadata
√ Should not allow to withdraw token not owner by user (541ms)
√ Should emit event with token metadata (791ms)

Contract: Rush1155RootToken

mint token
√ non transactor cannot mint new tokenIds (270ms)
√ transactor should be able to mint new tokens (328ms)

mint token batch
√ non transactor cannot mint new tokenIds (302ms)
√ transactor should be able to mint new tokens (346ms)

Contract: ERC721
Contract interface
AccessControlEnumerable

ERC165's supportsInterface(bytes4)
√ uses less than 30k gas (157ms)
√ claims support (66ms)

getRoleMember(bytes32,uint256)
√ has to be implemented

getRoleMemberCount(bytes32)
√ has to be implemented

AccessControl
ERC165's supportsInterface(bytes4)

√ uses less than 30k gas (129ms)
√ claims support (81ms)

hasRole(bytes32,address)
√ has to be implemented

getRoleAdmin(bytes32)
√ has to be implemented

grantRole(bytes32,address)
√ has to be implemented

revokeRole(bytes32,address)
√ has to be implemented

renounceRole(bytes32,address)
√ has to be implemented

base URI
√ only owner can set base URI (316ms)
√ only transactor should be able to set token URI (175ms)

Contract: Rush1155ChildToken
token uri
√ only owner can update (299ms)
√ owner should be able to update (255ms)

mint tokens
√ non transactor cannot mint new tokenIds (192ms)
√ minting new tokenIds to happen in autoincrement number (281ms)
√ non transactor cannot mint existing tokenIds (471ms)
√ minting non existing tokenId (190ms)
√ minting existing tokenIds (611ms)
√ non transactor cannot get tokens of owners (378ms)
√ transactor can get tokens of owners in batches (717ms)
√ transactor can get tokens of owners in single batch (701ms)

Should mint token on deposit
√ ChildChainManagerProxy can make deposit tx (504ms)
√ Deposit called by non depositor account (268ms)
√ Deposit called on invalid user account (173ms)

Should burn token on single withdraw
√ Should not allow to withdraw token not owner by user (537ms)
√ Should burn token on single withdraw (552ms)

Should burn tokens on batch withdraw
√ Should not allow to withdraw batch token not owner by user (856ms)
√ Should burn token on batch withdraw (976ms)

Contract: HikeChildToken
Update ChildChainManager
√ Update ChildChainManager from non owner (224ms)
√ Update ChildChainManager with invalid address (209ms)
√ Update ChildChainManager with valid address (698ms)

Withdraw
√ Withdraw tokens of user (320ms)

Contract: TransactorRole
with token deployed

Only transactor function
√ Non transactor should not be allowed (79ms)

isTransactor
√ should return false for non transactors (51ms)

addTransactor
√ should not allow invalid address (209ms)
√ non owner cannot call (315ms)
√ should only be called by owner (425ms)

removeTransactor
√ non owner cannot call (290ms)
√ should only be called by owner (605ms)

Contract: TransactorRoleUpgradeable
with token deployed

Only transactor function
√ Non transactor should not be allowed (76ms)

isTransactor
√ should return false for non transactors (49ms)

addTransactor
√ should not allow invalid address (160ms)
√ non owner cannot call (267ms)
√ should only be called by owner (419ms)

removeTransactor
√ non owner cannot call (310ms)
√ should only be called by owner (537ms)

Contract: VestingWallet
√ rejects zero address for beneficiary (222ms)
√ check vesting contract (154ms)
vesting schedule
ERC20 vesting
√ check vesting schedule (62ms)
√ execute vesting schedule (709ms)

Contract: Wallet Executor
Calling executor method of WalletExecutor
√ Calling executor method with invalid transactor (195ms)
√ Calling executor method with invalid wallet address (229ms)
√ Calling executor method with invalid transactionId (155ms)
√ Calling executor method without adding wallet executor as spender (210ms)
√ Calling executor method with valid transactor (384ms)

646 passing (12m)

Code Coverage

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts\ 100 100 100 100

CompanyCustodialWallet.sol 100 100 100 100

ContractSpendable.sol 100 100 100 100

ContractSpenderManager.sol 100 100 100 100

ContractTokenUnlockManager.sol 100 100 100 100

CustodialWallet.sol 100 100 100 100

CustodialWalletFactory.sol 100 100 100 100

MinimalForwarder.sol 100 100 100 100

NFTChildToken.sol 100 100 100 100

NFTRootToken.sol 100 100 100 100

NFTToken.sol 100 100 100 100

Rush1155ChildToken.sol 100 100 100 100

Rush1155RootToken.sol 100 100 100 100

Rush1155Token.sol 100 100 100 100

RushChildToken.sol 100 100 100 100

RushToken.sol 100 100 100 100

TransactorRoleControl.sol 100 100 100 100

TransactorRoleControlUpgradeable.sol 100 100 100 100

VestingWallet.sol 100 100 100 100

WalletExecutor.sol 100 100 100 100

contracts\mocks\ 100 100 100 100

CustodialWalletMock.sol 100 100 100 100

ERC1155ReceiverMock.sol 100 100 100 100

ERC721RecieverMock.sol 100 100 100 100

Hike1155Mock.sol 100 100 100 100

Hike721Mock.sol 100 100 100 100

HikeTokenMock.sol 100 100 100 100

Rush1155TokenMock.sol 100 100 100 100

TransactorRoleMock.sol 100 100 100 100

All files 100 100 100 100

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

98455a5eedddaebd319b0ab028ffad29894f4998c5f4d8b0b46c8ef2a6c32fc9 ./CompanyCustodialWallet.sol

316efe75fdcbd84002085ad0073d3506fcc0344f0242aca03797b2f272a498da ./ContractSpendable.sol

b4cdbdd13b66309d2253c8b1275ce4c08d4a6393f354a786cb32b8a6b1114c4a ./ContractSpenderManager.sol

e84bea57311ce34b7857d1ec4949ffe7b0a4d0ddb5163670fd25276cd8270554 ./ContractTokenUnlockManager.sol

0e6acd788c0d99758092fcb3eac530321248febbb01c6c4e13d3ee97604ecf97 ./CustodialWallet.sol

58d26294a9a5264eea8a83444a08f7b37588ed89e677060e096301d7c875c88b ./CustodialWalletFactory.sol

306da8a66ca7ae9990bf648c677627aec1c572e331bf8749e658cdfaaa449523 ./MinimalForwarder.sol

b3bf7a48ba0aab752b0ec4b8d490bd9030a781929f740f977d5ae5bc8b58a6e5 ./NFTChildToken.sol

adbbc34f11bac41f4037493315ccf51244c3eccd54ec2279139bbcaca42eeabc ./NFTRootToken.sol

770618423ce4d609855861cb633b2adad889029163832325a41478a36766f88e ./NFTToken.sol

b10866a98c9e1de8d99d38881f626552c095a496ee4e60dc4a3a8873f5381a08 ./Rush1155ChildToken.sol

09d1d7019a1688b7ab9aa2265772732cf8a2fc809093d68f52e597373ba8e08a ./Rush1155RootToken.sol

cc8543cbe3ecc3c09d36f5da41428570bbd4b35582c4b1bbc46a8d4c5ffa6d9e ./Rush1155Token.sol

8b5d6cdf093bfd1964f182429de0678f1f4eea130da9231288e0807a0d35b68b ./RushChildToken.sol

5acd5bbb33b523d2089a547752f24b4005e4b234f044cf33f130021499b96258 ./RushToken.sol

4e8b1c2a9c89414016c3bde96ad8bf1e9f213b43c68ae570ee66fab61d6c81a6 ./TransactorRoleControl.sol

e7a7df439d23587c56bb252f7ef609ee6b7269a727e2463aa91898a70a1f931d ./TransactorRoleControlUpgradeable.sol

57ddb5e687cbe1c34953f072067494318de6bda6d143e74339d58cc4b32f345a ./VestingWallet.sol

e0dbe17d4697001c2be2a6e45cf94e2b5eeafad78eb4bfbbe1153f9c1207408b ./WalletExecutor.sol

574c57a0a44a36e6358a8ddc7780c1ae6a43909c82c0619ccfb4d5f4d25a1e40 ./CustodialWalletMock.sol

7ac0773ddeca253c5755e1aa7b20bccfa5dc01dd4cbb1ceaf9c4b9980f083282 ./ERC1155ReceiverMock.sol

cea0fedeccbe561a39114e283799df4d43b0b6d19bc92ab23691554cf0e42790 ./ERC721RecieverMock.sol

714bee7182d645ea1086b71fb2f95ea4d1e6209c4d602e6a6d6d2d0c7262d617 ./Hike1155Mock.sol

a716d0aaf21e235b2e294c479d1369e338f5d351556f107e7645406138bc5483 ./Hike721Mock.sol

0a8fe86f483b12f8f5b200eabb0c5ec298452ca740588204d340508b62863105 ./HikeTokenMock.sol

d46ed47b986d555893fdbfdc5d7e9b627c57c03817f3a4ca77d2e6cb05268c77 ./Rush1155TokenMock.sol

8ca7e15ff96775427b87c16833d98579e81e4018e1727a698920c880a3b05398 ./TransactorRoleMock.sol

f41d3292ce2ace6f4b9355778371b6005ed5d9084ef48545fabb0a8099840832 ./RushToken.sol

e37bd95888638893b341235cb25673b2537969580604355de10bb86b28fc4bdc ./contracts/ContractSpendable.sol

760a67c380b4d150947a81e351a8e727543b08cd5e597ddf5a5bfd70b91baa6b ./contracts/ContractSpenderManager.sol

3a46d5cd8721986232574ec1527febfe42042cdcc6eb91e3b72d1f313e8bad70 ./contracts/ContractTokenUnlockManager.sol

f954cd5f064787e6637effba59dfee927860ee44db6a6af746049099aad9aed9 ./contracts/CustodialWallet.sol

1bb85c10d607c6fb452a09e813db6af8f54484f058d7b4add5e5757b153e467f ./contracts/CustodialWalletFactory.sol

b62d6e62e60c0c15988e1d003b3c19623a22c92444124a669aeff4304fa9eadc ./contracts/NFTToken.sol

4e8b1c2a9c89414016c3bde96ad8bf1e9f213b43c68ae570ee66fab61d6c81a6 ./contracts/TransactorRoleControl.sol

23e69a097d8da9ed47c29d920fb0ae943da221ca4a0a7286a6481c9e9c2e5bbb ./contracts/VestingWallet.sol

Tests

420a3c3ab40dc69e52ef699a623157f6af5d7b1781ce5862868ae5559fcb9389 ./CompanyCustodialWallet.test.js

faf19f3f35a05c98ec3a0226a3b2ee0ea03eb65379e594883d47491bba2ee0a2 ./Context.behavior.js

566ff66ee886e92c32e73411329079ea6eabd013fb31da748c667342edc84c18 ./ContractSpenderManager.test.js

93bf53e8ce97b2416d6d6b4eece0eac9a80a687a8d7605cfbca012524e7f4d08 ./ContractUnlockManager.test.js

8aad85fe2b40d046f32899d9e9b3dd054b6bdbbd3a23afe7e5b8d03e56c4f785 ./CustodialWallet.test.js

ed01e582cc64c2540bdb6feda6706bdac20f2f516e897cab609ae8ab8d4fbfbf ./CustodialWalletFactory.test.js

d44afd873e69ec00fadcc3b70118598aa9e6ab7cdf2b93a7a3fe70bd65793033 ./eip712.js

e3b3f7833b82c7000ca82dafa9aedafce5367004e3da34ac3108de8a70002098 ./ERC1155.behavior.js

6c154bc3e2c0b81a49dac58d922fa0c4130adb7cfa10e620e1fb3aaf3e911827 ./ERC1155.test.js

90ee2a1b82c3488db0dbf0eef463c4bd55f5ef9bf0fe8edb422f30daa9d4e206 ./ERC1155Supply.test.js

8f781ba1c4ed75d21221ff7983071e95c01f56cc0e09a7098cd2d0b633544648 ./ERC20.behaviour.js

dbdaa7b97f89cc592c6b5f4de8be58ed51488bc98cbbbc34951ab275802aa7e8 ./ERC20Capped.behavior.js

e8a98836c2ad7890bd5f5e2777a8f2d5f062baec4132e3c134f3dcce87c4767d ./ERC20Capped.test.js

303e703891cffde377364874905363e759fc4f46bd5afc459b4eaf86b829abb7 ./ERC721.behavior.js

10da8ee2488a974f0ab83ceeb01cc9fe408af53ecbd759a3d41a83dfc1a9b362 ./ERC721.test.js

18dd65a86d77c2433236d109abdc45cda763a2201b87eabdde759df00895eea4 ./ERC721URIStorage.test.js

241e17eba132bb3cdad65fb8d64759bcf1b21e1e02414517bfe0e3d4a7f687e3 ./HikeToken.test.js

cdbfa35103d34e9f7154660d6825fb6b233773281015a2ea5d9f01224ff628aa ./HikeTokenPermit.test.js

f21f2339d59d9ddc223b741351e41bb9a88b68a053797683c44416d369e6a83e ./HikeTokenUUPSUpgradeable.test.js

19157b0ce2ef6c83101ad16e6ebd4d097f39b0235b6a28924820007bfec41776 ./HikeTokenVotes.test.js

d65e3f7c2c76131a747109e202bcc56079fe69a3d98424562f3dd629e3a3d718 ./MetaTransaction.test.js

600c23367b795776128f6add09adea93e41242f9cfdf2275fe61a89bc4053554 ./NFTChildToken.test.js

c131a21e3431454087addf95a5cfd8313466344549d33a788cf6da70bff075a1 ./NFTRootToken.test.js

db76c713df5dd014ecd1704a76a5dee1f309528a4f4576d4b69caf5866f825ce ./NFTToken.test.js

5b3ec81bad3344ed9e8c88b48fea743262fcaa748be56afd8f49d2482d5a7ffe ./Rush1155ChildToken.test.js

491929242f5065be37c623c00f69feb82100df3f5db61a82baec3c171bc64763 ./Rush1155RootToken.test.js

93d3a6cde281b4982f64a1f2da6da2cd1a0093287a03a9d8e1bdefa858adcf5f ./RushChildToken.test.js

7cd079ab6f72581453c1181885e70db2c100ad80c14494aab3d37de34c55acdb ./SupportsInterface.behavior.js

b08961c8157a2cdafb91261130985796db8b66fbc18267eb327b81e408eaf2e8 ./TransactorRole.behaviour.js

362aab89765fc123a7bd35ea34bc4deb479b33ac61eeb5bce4ebc5cab651b0b9 ./TransactorRoleControl.test.js

1b991fd38b2f13b505a8c00ebbeaa79a1cf28d6887739ffbb331b73a41ca32f3 ./TransactorRoleControlUpgradeable.test.js

47c2a5d997452a58013f85e6093c587b236fb9f532c17b8412e23071a7e76323 ./VestingWallet.behaviour.js

8a2d8930f4307fbe397be56c0e53c6387f44330fb9954a045ea15e5788961c59 ./VestingWallet.test.js

8f1ce00d998caf9cc6d3c1f01bd906a2600c8bc0355a1ac22d958aeb4f1e0311 ./WalletExecutor.test.js

420a3c3ab40dc69e52ef699a623157f6af5d7b1781ce5862868ae5559fcb9389 ./CompanyCustodialWallet.test.js

faf19f3f35a05c98ec3a0226a3b2ee0ea03eb65379e594883d47491bba2ee0a2 ./Context.behavior.js

566ff66ee886e92c32e73411329079ea6eabd013fb31da748c667342edc84c18 ./ContractSpenderManager.test.js

93bf53e8ce97b2416d6d6b4eece0eac9a80a687a8d7605cfbca012524e7f4d08 ./ContractUnlockManager.test.js

8aad85fe2b40d046f32899d9e9b3dd054b6bdbbd3a23afe7e5b8d03e56c4f785 ./CustodialWallet.test.js

ed01e582cc64c2540bdb6feda6706bdac20f2f516e897cab609ae8ab8d4fbfbf ./CustodialWalletFactory.test.js

d44afd873e69ec00fadcc3b70118598aa9e6ab7cdf2b93a7a3fe70bd65793033 ./eip712.js

e3b3f7833b82c7000ca82dafa9aedafce5367004e3da34ac3108de8a70002098 ./ERC1155.behavior.js

6c154bc3e2c0b81a49dac58d922fa0c4130adb7cfa10e620e1fb3aaf3e911827 ./ERC1155.test.js

90ee2a1b82c3488db0dbf0eef463c4bd55f5ef9bf0fe8edb422f30daa9d4e206 ./ERC1155Supply.test.js

8f781ba1c4ed75d21221ff7983071e95c01f56cc0e09a7098cd2d0b633544648 ./ERC20.behaviour.js

dbdaa7b97f89cc592c6b5f4de8be58ed51488bc98cbbbc34951ab275802aa7e8 ./ERC20Capped.behavior.js

e8a98836c2ad7890bd5f5e2777a8f2d5f062baec4132e3c134f3dcce87c4767d ./ERC20Capped.test.js

303e703891cffde377364874905363e759fc4f46bd5afc459b4eaf86b829abb7 ./ERC721.behavior.js

10da8ee2488a974f0ab83ceeb01cc9fe408af53ecbd759a3d41a83dfc1a9b362 ./ERC721.test.js

18dd65a86d77c2433236d109abdc45cda763a2201b87eabdde759df00895eea4 ./ERC721URIStorage.test.js

241e17eba132bb3cdad65fb8d64759bcf1b21e1e02414517bfe0e3d4a7f687e3 ./HikeToken.test.js

cdbfa35103d34e9f7154660d6825fb6b233773281015a2ea5d9f01224ff628aa ./HikeTokenPermit.test.js

f21f2339d59d9ddc223b741351e41bb9a88b68a053797683c44416d369e6a83e ./HikeTokenUUPSUpgradeable.test.js

19157b0ce2ef6c83101ad16e6ebd4d097f39b0235b6a28924820007bfec41776 ./HikeTokenVotes.test.js

d65e3f7c2c76131a747109e202bcc56079fe69a3d98424562f3dd629e3a3d718 ./MetaTransaction.test.js

600c23367b795776128f6add09adea93e41242f9cfdf2275fe61a89bc4053554 ./NFTChildToken.test.js

c131a21e3431454087addf95a5cfd8313466344549d33a788cf6da70bff075a1 ./NFTRootToken.test.js

db76c713df5dd014ecd1704a76a5dee1f309528a4f4576d4b69caf5866f825ce ./NFTToken.test.js

5b3ec81bad3344ed9e8c88b48fea743262fcaa748be56afd8f49d2482d5a7ffe ./Rush1155ChildToken.test.js

491929242f5065be37c623c00f69feb82100df3f5db61a82baec3c171bc64763 ./Rush1155RootToken.test.js

93d3a6cde281b4982f64a1f2da6da2cd1a0093287a03a9d8e1bdefa858adcf5f ./RushChildToken.test.js

7cd079ab6f72581453c1181885e70db2c100ad80c14494aab3d37de34c55acdb ./SupportsInterface.behavior.js

b08961c8157a2cdafb91261130985796db8b66fbc18267eb327b81e408eaf2e8 ./TransactorRole.behaviour.js

362aab89765fc123a7bd35ea34bc4deb479b33ac61eeb5bce4ebc5cab651b0b9 ./TransactorRoleControl.test.js

1b991fd38b2f13b505a8c00ebbeaa79a1cf28d6887739ffbb331b73a41ca32f3 ./TransactorRoleControlUpgradeable.test.js

47c2a5d997452a58013f85e6093c587b236fb9f532c17b8412e23071a7e76323 ./VestingWallet.behaviour.js

8a2d8930f4307fbe397be56c0e53c6387f44330fb9954a045ea15e5788961c59 ./VestingWallet.test.js

8f1ce00d998caf9cc6d3c1f01bd906a2600c8bc0355a1ac22d958aeb4f1e0311 ./WalletExecutor.test.js

98455a5eedddaebd319b0ab028ffad29894f4998c5f4d8b0b46c8ef2a6c32fc9 ./contracts/CompanyCustodialWallet.sol

e37bd95888638893b341235cb25673b2537969580604355de10bb86b28fc4bdc ./contracts/ContractSpendable.sol

760a67c380b4d150947a81e351a8e727543b08cd5e597ddf5a5bfd70b91baa6b ./contracts/ContractSpenderManager.sol

3a46d5cd8721986232574ec1527febfe42042cdcc6eb91e3b72d1f313e8bad70 ./contracts/ContractTokenUnlockManager.sol

f954cd5f064787e6637effba59dfee927860ee44db6a6af746049099aad9aed9 ./contracts/CustodialWallet.sol

1bb85c10d607c6fb452a09e813db6af8f54484f058d7b4add5e5757b153e467f ./contracts/CustodialWalletFactory.sol

306da8a66ca7ae9990bf648c677627aec1c572e331bf8749e658cdfaaa449523 ./contracts/MinimalForwarder.sol

b3bf7a48ba0aab752b0ec4b8d490bd9030a781929f740f977d5ae5bc8b58a6e5 ./contracts/NFTChildToken.sol

adbbc34f11bac41f4037493315ccf51244c3eccd54ec2279139bbcaca42eeabc ./contracts/NFTRootToken.sol

b62d6e62e60c0c15988e1d003b3c19623a22c92444124a669aeff4304fa9eadc ./contracts/NFTToken.sol

b10866a98c9e1de8d99d38881f626552c095a496ee4e60dc4a3a8873f5381a08 ./contracts/Rush1155ChildToken.sol

09d1d7019a1688b7ab9aa2265772732cf8a2fc809093d68f52e597373ba8e08a ./contracts/Rush1155RootToken.sol

cc8543cbe3ecc3c09d36f5da41428570bbd4b35582c4b1bbc46a8d4c5ffa6d9e ./contracts/Rush1155Token.sol

8b5d6cdf093bfd1964f182429de0678f1f4eea130da9231288e0807a0d35b68b ./contracts/RushChildToken.sol

f41d3292ce2ace6f4b9355778371b6005ed5d9084ef48545fabb0a8099840832 ./contracts/RushToken.sol

4e8b1c2a9c89414016c3bde96ad8bf1e9f213b43c68ae570ee66fab61d6c81a6 ./contracts/TransactorRoleControl.sol

23e69a097d8da9ed47c29d920fb0ae943da221ca4a0a7286a6481c9e9c2e5bbb ./contracts/VestingWallet.sol

574c57a0a44a36e6358a8ddc7780c1ae6a43909c82c0619ccfb4d5f4d25a1e40 ./contracts/mocks/CustodialWalletMock.sol

7ac0773ddeca253c5755e1aa7b20bccfa5dc01dd4cbb1ceaf9c4b9980f083282 ./contracts/mocks/ERC1155ReceiverMock.sol

cea0fedeccbe561a39114e283799df4d43b0b6d19bc92ab23691554cf0e42790 ./contracts/mocks/ERC721RecieverMock.sol

714bee7182d645ea1086b71fb2f95ea4d1e6209c4d602e6a6d6d2d0c7262d617 ./contracts/mocks/Hike1155Mock.sol

a716d0aaf21e235b2e294c479d1369e338f5d351556f107e7645406138bc5483 ./contracts/mocks/Hike721Mock.sol

0a8fe86f483b12f8f5b200eabb0c5ec298452ca740588204d340508b62863105 ./contracts/mocks/HikeTokenMock.sol

d46ed47b986d555893fdbfdc5d7e9b627c57c03817f3a4ca77d2e6cb05268c77 ./contracts/mocks/Rush1155TokenMock.sol

035e2df8cba5cb5b401389b1f0c744d489426dc86c9ef9b53a78a6e6329294c5 ./contracts/mocks/TransactorRoleMock.sol

Changelog

2022-03-14 - Initial report•

2022-04-11 - Final report•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Hike - Rush Gaming Audit

