
Super Sushi Samurai
TokenSecurity Review

Cantina Managed review by:
0xRajeev, Lead Security Researcher
r0bert, Security Researcher
Sujith Somraaj, Associate Security Researcher
April 20, 2024

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3
3 Findings 43.1 Medium Risk . 43.1.1 Vesting of developer tokens is excessively slow . 43.1.2 Privileged role and actions across SSS token logic lead to centralization risks for users 43.2 Low Risk . 53.2.1 Missing address(this) check in setExcludeFromTax()may lead to unexpected taxation 53.2.2 Reconfiguring Blast points operator via configBlastPointsOperator() will lead tounexpected behavior . 63.2.3 Lack of two-step ownership transfer is risky . 63.2.4 _update() considering 0xdead as burn address will lead to missed taxes 73.2.5 rescueETH()may revert silently . 73.2.6 First SSS buyer from the WETH/SSS liquidity pool can always sell in the future for aprofit . 83.2.7 SSS token contract may become insolvent to cover devTokenAmountClaimable claims 83.3 Informational . 93.3.1 Front-running risks are present if contract is deployed on other blockchains 93.3.2 Missing revocation can lead to residual approval for Uniswap router while addingliquidity . 93.3.3 Miscalculations in migration from v1 to v2 may lead to unexpected behavior 103.3.4 Missing checks on initPool parameters allow incorrect pool initialization 103.3.5 addLiquidity() will revert if contract's balance is less than ethAmount 103.3.6 Code duplication in _unlockTokenForDev and _calculateUnlockTokenForDev is un-necessary . 113.3.7 _preCheck function has unused amount parameter . 123.3.8 Redundant devTokenAmountRemain initialization in constructor is unnecessary 123.3.9 Unindexed event parameters can make offchain tracking less efficient and cumber-some . 12

1

1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary
Super Sushi Samurai is a social strategy focused idle fully on-chain game, played on the telegram app andpowered by the Blast network
From Apr 1st to Apr 3rd the Cantina team conducted a review of sss-token-contracts on commit hashf5fa785b. The team identified a total of 18 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 0
• Medium Risk: 2
• Low Risk: 7
• Gas Optimizations: 0
• Informational: 9

3

https://github.com/threes-studio/sss-token-contracts
https://github.com/threes-studio/sss-token-contracts/tree/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/

3 Findings
3.1 Medium Risk
3.1.1 Vesting of developer tokens is excessively slow
Severity: Medium Risk
Context: SSS.sol#L232-234
Description: The full vesting of developer SSS tokens is contingent upon reaching a trading volume that is160 times the TOTAL_SUPPLY of SSS tokens. To evaluate the feasibility of this condition, a test was designedand conducted as follows:

• Liquidity Pool Reserves: 10,000 WETH and 80% of SSS TOTAL_SUPPLY.
• TestMechanism: Conduct a swapof 500WETH for SSS, followedby the reverse swap (SSS forWETH),repeatedly. Each swap operation moves 5% of the total WETH reserves in the liquidity pool.
• Evaluation Criterion: Count each round of the swap pair (WETH→ SSS and SSS→WETH) as a singleloop execution.
• Outcome: After 25,915 such loop executions (equivalent to 51,830 swap operations), the devToken-
AmountRemain state variable showed a decrease from 20,681,473,014,663.449761394484926418 to18,803,903,272,867.618094644255968012, indicating approximately a 10% reduction in the vestedtokens due to over 50,000 high-volume transactions.

Impact: The dev SSS tokens will never be fully vested. This test demonstrates that even with significantand high-volume trading activity, the developer SSS tokens do not fully vest, falling short by a considerablemargin.
Likelihood: High + Impact: Low (as the tokens can be rescued after 1 year) = Severity: Medium.
Recommendation: Consider decreasing the targetVolume in order to allow the dev SSS tokens to fullyvest.
SSS: Acknowledged.
Cantina: Acknowledged.
3.1.2 Privileged role and actions across SSS token logic lead to centralization risks for users
Severity: Medium Risk
Context: SSS.sol
Description: Several onlyOwner functions across SSS token logic affect critical protocol state and seman-tics, and therefore, lead to centralization risk for users. Some examples are highlighted below:
1. setRestrictedTradingPool() can arbitrarily include addresses as restrictedTradingPools to cen-sor them from token transfers as enforced in _preCheck() of the overridden _update() function.
2. rescueToken(), which is meant to:

1. Rescue any accidentally sent non-SSS tokens at any time or
2. Rescue accidentally sent SSS tokens after 1 year of deployment, allows the owner to potentiallyaccess unclaimed community tax tokens and dev tax+unlocked tokens which continue to accu-mulate in the SSS token contract after 1 year.

3. setCommunityAddress() can arbitrarily change the communityAddress, which can claim communitytax tokens via claimCommunityTax().

4. setDevAddress() can arbitrarily change the devTaxReceiverAddress and devTokenReceiverAddress,which receive dev tax and dev unlocked tokens via claimDevTax() and claimDevToken().

5. setLiquidityPool() can arbitrarily change an address's protocol-recognized liquidityPools status,which impacts its consideration in tax calculation and unlocking dev tokens.

4

https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L232-234
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol

6. changeTaxPercent() can change the default values of buyTaxPercent (2%) and sellTaxPercent (2%)to a maximum of 5% and the default split-up of devPercent and communityPercent from 20-80 toany percentage of choice.
7. setPreMigrationOperator() can arbitrarily include addresses that may trade in SSS tokens beforemigration is complete.
8. setExcludeFromTax() can include the liquidity pool address and prevent the developer's and com-munity taxes from being charged.
9. addLiquidity() can be used to add dev tax tokens and community tax tokens held in the tokencontract to be added to liquidity pool.
10. setExcludeFromTax() can arbitrarily include/exclude any address for tax payments during transfers.
Impact: If the privileged role is compromised, it can arbitrarily affect critical protocol-wide state andsemantics. Likelihood: Low + Impact: High (Loss/lock of tokens in the worst-case scenario) = Severity:Medium.
Recommendation: Consider:
1. Documenting the privileged role and actions for protocol user awareness.
2. Enforcing role-based access control, where different privileged roles control different protocol as-pects and are backed by different keys, to follow the separation-of-privileges security design princi-ple.
3. Enforce reasonable thresholds (e.g., with a split between devPercent and communityPercent) andchecks wherever possible.
4. Emitting events for all privileged actions, e.g., configBlastPointsOperator().
5. Privilege actions affecting critical protocol semantics should be locked behind timelocks so that userscan decide to exit or engage.
6. Following the strictest opsec guidelines for privileged keys, e.g., use of reasonable multi sig andhardware wallets.

SSS: Acknowledged.
Cantina: Acknowledged.
3.2 Low Risk
3.2.1 Missing address(this) check in setExcludeFromTax()may lead to unexpected taxation
Severity: Low Risk
Context: SSS.sol#L288-L295
Description: The function setExcludeFromTax() excludes an address frombeing taxedwhile transferring.In the constructor, the token contract itself is excluded frombeing taxed. Hence, any transfers from/to thetoken contract are tax-free. However, the owner can accidentally reverse this by including address(this)for taxes.
Impact: This leads to double the taxes being charged for dev tax and community tax because of the addi-tional tax when they are claimed. This also leads to taxes being charged when contract owner/operatortransfers the initial DEX+DEV supply to the token contract during deployment.
Likelihood: Very Low + Impact: Medium = Severity: Low.
Recommendation: Consider adding a check to ensure that address(this) is always excluded from taxes.

function _setExcludeFromTax(address account, bool exclude) internal {

+ if (account == address(this) && !exclude) revert();

excludeFromTaxes[account] = exclude;

emit SetExcludeFromTax(account, exclude);

}

SSS: Addressed in d41e6166.

5

https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L288-L295
https://github.com/threes-studio/sss-token-contracts/commit/d41e61660b212b8b2cf34a2d848f892b206ae04a

Cantina: Reviewed that this is fixed by adding require(account != address(this), "Cannot exclude

contract address"); to function setExcludeFromTax.
3.2.2 ReconfiguringBlast points operator via configBlastPointsOperator()will lead tounexpectedbehavior
Severity: Low Risk
Context: SSS.sol#L113, SSS.sol#L344-L346, Blast Documentation
Description: Given that IBlastPoints(blastPointAddress).configurePointsOperator(blastPointOperator);is already called in the constructor (as recommended in the Blast documentation), the configBlast-

PointsOperator() setter is presumably to change the existing operator. However, according to Blastdocs:
Once the points operator has been set once, only the existing points operator can updateit by calling configurePointsOperatorOnBehalf. function configurePointsOperatorOn-Behalf(address contractAddress, address operator) external; The first parameter ofconfigurePointsOperatorOnBehalf is the contract you’d like to change the points operatorfor. The second parameter is the new points operator. The msg.sender must be the currentpoints operator. This mechanism allows you to change your points operator at any point afteryour contract has been created.

Therefore, attempting to reconfigure blast points operator via configBlastPointsOperator() will lead tounexpected behavior, i.e. will likely revert (Blast docs do not cover this scenario) or not achieve operatorreconfiguration as expected because msg.sender is the sss token contract and not the previously set
blastPointOperator.
Impact: Blast points will not be distributed to the new operator and may be lost.
Likelihood: Low (Reconfiguration may not be required) + Impact: Low (Previously set blastPointOperatorwill have to reconfigure the new operator by calling configurePointsOperatorOnBehalf()) = Severity: Low.
Recommendation: Consider replacing configBlastPointsOperator() with an alternative mechanism.
SSS: Acknowledged.
Cantina: Acknowledged.
3.2.3 Lack of two-step ownership transfer is risky
Severity: Low Risk
Context: SSS.sol#L16
Description: The ownership transfer process for contracts inheriting from Ownable involves the currentowner calling transferOwnership() function. If the nominated EOA account is not a valid account, it ispossible that the owner may accidentally transfer ownership to an uncontrolled account thereby losingaccess to all functions with the onlyOwnermodifier.
SSS.sol has several onlyOwner functions and uses Ownable.
Impact: All onlyOwner functions may become unusable.
Likelihood: Very Low + Impact: High = Severity: Low
Recommendation: It is recommended to implement a two-step ownership transfer where the ownernominates a new owner and the nominated account explicitly accepts ownership. This ensures the nom-inated EOA account is a valid and active account. This can be achieved by using OpenZeppelin's Own-able2Step instead of Ownable.
SSS: Addressed in d41e6166.
Cantina: Reviewed that this is fixed as recommended by using Ownable2Step.

6

https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L113
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L344-L346
https://docs.blast.io/airdrop/mainnet-points-api/how-to-integrate-api
https://docs.blast.io/airdrop/mainnet-points-api/how-to-integrate-api
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.8/contracts/access/Ownable.sol#L69-L72
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.8/contracts/access/Ownable2Step.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.8/contracts/access/Ownable2Step.sol
https://github.com/threes-studio/sss-token-contracts/commit/d41e61660b212b8b2cf34a2d848f892b206ae04a
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.8/contracts/access/Ownable2Step.sol

3.2.4 _update() considering 0xdead as burn address will lead to missed taxes
Severity: Low Risk
Context: SSS.sol#L130-L135
Description: The _update() internal function in SSS.sol contract overrides the inherited _update() func-tion from the base ERC20.sol contract of the Openzeppelin library.
While the overridden function in SSS.sol contract considers sending tokens to either address(0)or 0xdeadas valid burn operations, the function in ERC20 only treats address(0) as a valid burn address.
As a result, if tokens are transferred to the 0xdead address, it is considered a burn operation by SSS, butthe total supply is not reduced, leading to a mismatched state between SSS and ERC20.
function _update(address from, address to, uint256 amount) internal override virtual {

// ...

if (from == address(0) || to == address(0) || to == address(0xdead)) {

super._update(from, to, amount);

return;

}

// ...

}

Impact: If users transfer to the 0xdead address, it is considered a burn by SSS, but the total supply is notreduced thereby affecting the overall accounting. On the other hand, if supply is not reduced then suchtransactions should be taxed as developers and the community will miss taxes.
Likelihood: Low (Token burns to 0xdead should be rare) + Impact: Low (Missed taxes on token transfersto 0xdead) = Severity: Low.
Recommendation: Consider sending tokens only to address(0) as a valid burn operation by removing
address(0xdead) from consideration in _update().
SSS: Addressed in d41e6166.
Cantina: Reviewed that this is fixed as recommended.
3.2.5 rescueETH()may revert silently
Severity: Low Risk
Context: SSS.sol#L334
Description: The rescueETH function is a privileged function that allows the owner to move native tokensfrom the SSS token contract to itself. However, this function could be optimized, as send will forwardETH with 2300 GAS, which might fail if the owner is a multi-sig (or) has any other privileged actions in thefallback receive function.
function rescueETH(uint256 amount) external onlyOwner returns (bool success) {

success = payable(msg.sender).send(amount);

emit RescueETH(amount, success);

}

Impact: Owner address cannot be a Gnosis multi-sig (or) a contract that consumes more than 2300 GASwhile receiving native tokens.
Likelihood: Low + Impact: Low = Severity: Low
Recommendation: Use call to transfer ETH to the owner instead of send. Additionally, we could alsoconsider adding a recipient parameter for more flexibility.
function rescueETH(uint256 amount) external onlyOwner returns (bool success) {

(success,) = payable(msg.sender).call{value: amount}("");

if(!success) revert();

emit RescueETH(amount, success);

}

SSS: Addressed in d41e6166.
Cantina: Reviewed that this is fixed as recommended.

7

https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L130-L135
https://github.com/threes-studio/sss-token-contracts/commit/d41e61660b212b8b2cf34a2d848f892b206ae04a
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L334
https://github.com/threes-studio/sss-token-contracts/commit/d41e61660b212b8b2cf34a2d848f892b206ae04a

3.2.6 First SSS buyer from the WETH/SSS liquidity pool can always sell in the future for a profit
Severity: Low Risk
Context: SSS.sol#L108
Description: As mentioned in the documentation the project's revenue model relies exclusively on atrading tax applied within a single DEX. The initial liquidity pool for this DEX is established by depositing80% of the SSS TOTAL_SUPPLY and an Ether amount setting the initial SSS token price at $0.000000001125,as detailed in the tokenomics section of the documentation.
However, this implementation introduces the following issue:

• Initial Purchase Impact: The first transaction to buy SSS tokens from the DEX increases the SSS priceby contributing WETH and withdrawing SSS, thus depleting the SSS reserves and inflating the price.
• Subsequent Transactions: As more users buy SSS, the imbalance between WETH and SSS reservesgrows, driving the price of SSS even higher.
• Exploitation Strategy: The initial buyer can exploit this by conducting what could be called a multi-block sandwich attack: purchasing a significant portion of the SSS reserve at the initial lower price,waiting for others to further drive up the price, and then selling the initially acquired SSS at a sub-stantial profit.

Impact: First buyer can secure a disproportionate share of SSS reserves at a low cost to thereby inflatethe entry price for subsequent buyers and later sell for significant profit. The planned removal of peruser/transaction trade limit and bot detection logic may increase the likelihood of this scenario.
Likelihood: Low + Impact: Med = Severity: Low.
Recommendation: Consider a revision of the token launch strategy with one potential option being toconduct a presale of SSS tokens at a fixed price before establishing the liquidity pool. Consider retainingthe per user/transaction trade limit and bot detection logic.
SSS: Acknowledged.
Cantina: Acknowledged.
3.2.7 SSS token contract may become insolvent to cover devTokenAmountClaimable claims
Severity: Low Risk
Context: SSS.sol#L208-210
Description: Upon deployment, the SSS contract calculates initial tax allocations as follows:

• Developer Tax Allocation: devTaxTokenAmountAvailable is set to 0.4% of the total trading volume(tradingVol).
• Community Tax Allocation: communityTaxTokenAmountAvailable is set to 1.6% of the total tradingvolume.

These allocations are intended to increase with each taxable transaction, as delineated in:
• For general tax application: SSS.sol#L130-150.
• For specific increase logic: SSS.sol#L207-L224.

However, the 5% of total SSS token DEV_SUPPLY is not enough to cover all the devTokenAmountClaimableclaims because it does not account for the initial devTaxTokenAmountAvailable and communityTaxToken-

AmountAvailable allocations for 2% tax over the carried over trading volume (in the constructor), which isperformed as part of the v1 to v2 migration.
Impact: A shortfall in the contract's ability to dispense owed SSS tokens to developers or the community,due to over-allocation without corresponding tax collection.
Likelihood: Very low + Impact: Medium = Severity: Low.
Recommendation: Consider sending the SSS contract more than 5% of the total SSS token supply tocover tax claims for the trading volume carried over from v1 as part of migration.
SSS: Acknowledged.

8

https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L108
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/README.md#restrict-other-trading-pool
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/README.md#tokenomics
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L208-210
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L130-150
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L207-L224

Cantina: Acknowledged.
3.3 Informational
3.3.1 Front-running risks are present if contract is deployed on other blockchains
Severity: Informational
Context: SSS.sol#L174-L175, SSS.sol#L177
Description: The SSS contract presents multiple front-running risks that can not be exploited in the Blastblockchain due to the centralization layer added by the sequencer. However, if the SSS contract is de-ployed on another chain where front-running is possible, then these risks should be taken into consider-ation:
1. Approval race condition present in ERC20 standard implementations (i.e. no increase/decrease al-lowance methods).
2. Use of block.timestamp as deadline in _addETHLiquidity() function: Most AMMs allow passing adeadline parameter. Protocols typically set it to block.timestamp, which does not protect the swapin any way because the validator can hold the transaction as the block.timestamp recorded in thetransaction will reflect the block's time at insertion.
3. No slippage prevention in _addETHLiquidity() function which sets amountAMin and amountBMin to 0.

Impact: Loss of funds when adding liquidity to the liquidity pool + possible users approving amountshigher than intended.
Likelihood: Very unlikely + Impact: Medium = Severity: Informational.
Recommendation: Consider the risks mentioned in case SSS token contract is deployed on a differentblockchain.
SSS: Acknowledged.
Cantina: Acknowledged.
3.3.2 Missing revocation can lead to residual approval for Uniswap router while adding liquidity
Severity: Informational
Context: SSS.sol#L171
Description: addLiquidity() adds liquidity to the Uniswap pool for SSS-WETH pair by utilizing the SSSToken and WETH present in the token contract. In this process, the router contract is given the necessarytoken approval. However, there is no guarantee that the Uniswap router will utilize the entire tokenamount.
Impact: There may be be some residual approval for the Uniswap router from the token contract.
Recommendation: Consider revoking token approvals after adding liquidity because SSS tokens usedfor multiple reasons are pooled in the token contract.

function _addETHLiquidity(uint256 ethAmount, uint256 tokenAmount) internal {

_approve(address(this), address(uniswapV2Router), tokenAmount);

// ...

+ _approve(address(this), address(uniswapV2Router), 0);

}

SSS: Addressed in d41e6166.
Cantina: Reviewed that this is fixed as recommended.

9

https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L174-L175
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L177
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L171
https://github.com/threes-studio/sss-token-contracts/commit/d41e61660b212b8b2cf34a2d848f892b206ae04a

3.3.3 Miscalculations in migration from v1 to v2 may lead to unexpected behavior
Severity: Informational
Context: Global scope
Description: The protocol is expected to perform a tokenmigration from v1 to v2 as part of their relaunchgiven the prior incident with their v1. This involves minting the entire token supply to the token contractdeployer i.e. owner/operator. The deployer/owner/operator is then expected to transfer v2 tokens to v1holders as determined by their snapshot at the time of incident. They are also expected to migrate otherdata/tokens (e.g. trading volume) from v1 and add appropriate liquidity to a UniswapV2 pool.
While some of the abovemigration steps have been summarized in their documentation/communication,the migration script itself has not been made available and is therefore out-of-scope for this review.
Impact: Any miscalculation in token holdings/transfers or misconfiguration of the relaunch setup maylead to unexpected behavior.
Recommendation: Token/data migration from v1 to v2 should be performed with caution consideringthe different token holders, supplies and the required setup for relaunch.
SSS: Acknowledged.
Cantina: Acknowledged.
3.3.4 Missing checks on initPool parameters allow incorrect pool initialization
Severity: Informational
Context: SSS.sol#L242-L247
Description: According to the contract docs, 80% of the total supply is added to a Uniswap liquidity poolalongside $500k worth of ETH during the contract's initialization. But there are no bounds/checks toensure that initPool() is called with such values.
Impact: Owner can accidentally initialize the Uniswap pool with different values.
Recommendation: Consider making the tokenAmount parameter in initPool() equal to the DEX_SUPPLYand the ethAmount is equivalent to $500K or more using an oracle. Or if there is any other business logicto add the 80% supply to liquidity pool, consider documenting it accordingly.
SSS: Acknowledged.
Cantina: Acknowledged.
3.3.5 addLiquidity() will revert if contract's balance is less than ethAmount

Severity: Informational
Context: SSS.sol#L169
Description: The owner uses addLiquidity() to add liquidity for the SSS-WETH Uniswap pair. This func-tion is non-payable and so the owner is expected to have sent the necessary ethAmount to the contractbefore executing this call.
However, there is no validation to ensure that contract's balance is greater than ethAmount to process thetransaction.
Impact: Function will revert if contract's balance is less than ethAmount.
Recommendation: Consider adding a balance check before calling addLiquidityETH on Uniswap.

10

https://twitter.com/SSS_HQ/status/1771168070054375596
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L242-L247
https://github.com/threes-studio/sss-token-contracts/blob/main/README.md
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L169

function _addETHLiquidity(uint256 ethAmount, uint256 tokenAmount) internal {

+ if (address(this).balance < ethAmount) revert();

_approve(address(this), address(uniswapV2Router), tokenAmount);

uniswapV2Router.addLiquidityETH{value: ethAmount}(

address(this),

tokenAmount,

0, // accept any amount of ETH

0, // accept any amount of token

address(this),

block.timestamp

);

}

SSS: Addressed in d41e6166.
Cantina: Reviewed that this is fixed as recommended.
3.3.6 Code duplication in _unlockTokenForDev and _calculateUnlockTokenForDev is unnecessary
Severity: Informational
Context: SSS.sol#L227
Description: The function _calculateUnlockTokenForDev in SSS.sol calculates the unlocked amountbased on the trade volume during a transfer action (based on specific criteria, including whether thesender/receiver is a trading pool). This function is invoked in two places: the constructor and _unlockTo-

kenForDev. It has an early return optimization when devRemainToken == 0.
However, when called from the constructor, it doesn't need this check because the value is initialized with5% of the total supply. Similarly, in _unlockTokenForDev, this check is already performed before calling‘_calculateUnlockTokenForDev' which makes this check redundant.
function _unlockTokenForDev(address from, address to, uint256 amount) internal {

// ...

uint256 devRemainToken = devTokenAmountRemain;

if(devRemainToken == 0) {

return;

}

uint256 unlockAmount = _calculateUnlockTokenForDev(amount);

// ...

}

function _calculateUnlockTokenForDev(uint256 amount) internal view returns (uint256) {

uint256 devRemainToken = devTokenAmountRemain;

if(devRemainToken == 0) {

return 0;

}

// ...

}

Recommendation: Because the devRemainToken == 0 check in _calculateUnlockTokenForDev is notreachable in any condition, consider removing it.
SSS: Addressed in d41e6166.
Cantina: Reviewed that this is fixed by refactoring _unlockTokenForDev to remove the check there.

11

https://github.com/threes-studio/sss-token-contracts/commit/d41e61660b212b8b2cf34a2d848f892b206ae04a
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L227-L230
https://github.com/threes-studio/sss-token-contracts/commit/d41e61660b212b8b2cf34a2d848f892b206ae04a

3.3.7 _preCheck function has unused amount parameter
Severity: Informational
Context: SSS.sol#L152-L162
Description: The internal function _preCheck in SSS.sol validates whether migration is completed. Ifnot, it prevents user transfers during the migration phase and the trading of tokens on restricted tradingpools.
However, this function accepts an additional amount parameter, which is unused.
Recommendation: Consider removing the unused amount parameter from _preCheck function.
SSS: Addressed in d41e6166.
Cantina: Reviewed that this is fixed as recommended.
3.3.8 Redundant devTokenAmountRemain initialization in constructor is unnecessary
Severity: Informational
Context: SSS.sol#L52, SSS.sol#L118
Description: The variable devTokenAmountRemain tracks the total supply of dev tokens that have yet tobe claimed through dev tax. This variable is set to DEV_SUPPLY during its declaration; however, it is againinitialized to the same value inside the constructor, which is redundant.
Recommendation: Consider removing the redundant initialization of devTokenAmountRemain in the con-structor.
SSS: Addressed in d41e6166.
Cantina: Reviewed that declaration removes the initialization.
3.3.9 Unindexed event parameters can make offchain tracking less efficient and cumbersome
Severity: Informational
Context: SSS.sol#L68-L84
Description: The SSS.sol token contract emits multiple events during critical state changes. However,most event parameters lack the indexed keyword, making off-chain tracking less efficient and cumber-some:
event SetLiquidityPool(address pool, bool isPool);

event ClaimGasFee(address recipient, uint256 amount);

event DevClaimTax(address to, uint256 amount);

event DevClaimUnlockToken(address to, uint256 amount);

event CommunityClaimTax(address to, uint256 amount);

event MigrationCompleted();

event SetPreMigrationOperator(address operator, bool isOperator);

event SetRestrictedTradingPool(address pool, bool isRestricted);

event SetCommunityAddress(address community);

event SetDevAddress(address devTaxReceiver, address devTokenReceiver);

event ChangeTaxPercent(uint256 buyTax, uint256 sellTax, uint256 dev, uint256 community);

event SetExcludeFromTax(address account, bool exclude);

event RescueToken(address tokenAddress, address to, uint256 amount);

event RescueETH(uint256 amount, bool success);

event InitPool(uint256 ethAmount, uint256 tokenAmount);

Recommendation: Consider adding the indexed keyword to parameters of events that are frequentlyqueried (or filtered). For example,

12

https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L152-L162
https://github.com/threes-studio/sss-token-contracts/commit/d41e61660b212b8b2cf34a2d848f892b206ae04a
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L52
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L118
https://github.com/threes-studio/sss-token-contracts/commit/d41e61660b212b8b2cf34a2d848f892b206ae04a
https://github.com/threes-studio/sss-token-contracts/blob/f5fa785bbcf89cd001b95a5b995f62a4cc1bd761/contracts/SSS.sol#L68-L84

- event DevClaimTax(address to, uint256 amount);

+ event DevClaimTax(address indexed to, uint256 amount);

- event DevClaimUnlockToken(address to, uint256 amount);

+ event DevClaimUnlockToken(address indexed to, uint256 amount);

- event CommunityClaimTax(address to, uint256 amount);

+ event CommunityClaimTax(address indexed to, uint256 amount);

SSS: Addressed in commit d41e6166.
Cantina: Reviewed that this is fixed as recommended for the examples highlighted above.

13

https://github.com/threes-studio/sss-token-contracts/commit/d41e61660b212b8b2cf34a2d848f892b206ae04a

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Medium Risk
	Vesting of developer tokens is excessively slow
	Privileged role and actions across SSS token logic lead to centralization risks for users

	Low Risk
	Missing address(this) check in setExcludeFromTax() may lead to unexpected taxation
	Reconfiguring Blast points operator via configBlastPointsOperator() will lead to unexpected behavior
	Lack of two-step ownership transfer is risky
	_update() considering 0xdead as burn address will lead to missed taxes
	rescueETH() may revert silently
	First SSS buyer from the WETH/SSS liquidity pool can always sell in the future for a profit
	SSS token contract may become insolvent to cover devTokenAmountClaimable claims

	Informational
	Front-running risks are present if contract is deployed on other blockchains
	Missing revocation can lead to residual approval for Uniswap router while adding liquidity
	Miscalculations in migration from v1 to v2 may lead to unexpected behavior
	Missing checks on initPool parameters allow incorrect pool initialization
	addLiquidity() will revert if contract's balance is less than ethAmount
	Code duplication in _unlockTokenForDev and _calculateUnlockTokenForDev is unnecessary
	_preCheck function has unused amount parameter
	Redundant devTokenAmountRemain initialization in constructor is unnecessary
	Unindexed event parameters can make offchain tracking less efficient and cumbersome

