
DRA
FT

Super Sushi Samurai
GameSecurity Review

Cantina Managed review by:
Kurt Barry, Lead Security Researcher
r0bert, Security Researcher
Sujith Somraaj, Associate Security Researcher
April 18, 2024

DRA
FT

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3
3 Findings 43.1 High Risk . 43.1.1 setControllerAddresses() call can be front-run to drain the whole Diamond balance 43.1.2 Users can self-approve to join any clan . 53.1.3 Incorrect tax calculation in teleportToland . 53.2 Medium Risk . 63.2.1 Land owner can increase the land tax at any time forcing all the users in the land topay the tax . 63.2.2 Per-type and per-item purchase limits can be exceeded on the first purchase of anitem . 63.2.3 Centralization risk: Specific landIds can beminted to steal the accrued rewards fromthe users . 63.3 Low Risk . 73.3.1 Lack of mechanism to withdraw developer fee from shop revenue 73.3.2 Validate clan member levels are valid during clan creation 83.3.3 Registering account with self-referral . 83.3.4 Lack of referral fee withdrawal mechanism . 83.3.5 maxLandId is configurable but the code would break if it were ever changed 93.3.6 Uses of ERC20 permits are vulnerable to griefing via frontrunning 93.3.7 Showdown winner selection randomness is extremely weak 103.3.8 No mechanism to withdraw MegaWar fees . 103.3.9 sssToken burnt by the ShopFacet instead of shopToken 103.3.10 Staking account counter increased and decreased inconsistently 113.3.11 Direct usage of ecrecover allows signature malleability 113.3.12 Lack of a two-step transfer ownership pattern . 113.3.13 Lack of incentives to keep a pet in a "healthy" state . 113.3.14 Some rewards may be lost if gameStakingPoolPercent + landPoolPercent is notequal to BASE_PERCENT . 123.3.15 _proccesReferralPetSpeedBuff()does not consider the amount of itemsbeing bought 133.3.16 First user calling claimPoint will receive all the accrued rewards since contract de-ployment until the second call to claimPoint . 143.4 Informational . 143.4.1 Declare petTypeId and samuraiTypeId as constants . 143.4.2 Add zero checks to prevent creation of empty locks . 153.4.3 Use call Instead of transfer for native token transfers 153.4.4 Remove unused/debugging helper file imports . 153.4.5 Return if claimId (or) seasonId is zero in _recordClanLevel() 163.4.6 Add missing license identifiers . 163.4.7 Replace deprecated block.difficulty in weakRandom() 163.4.8 Underflow in findUpperBound can cause an unintended revert 173.4.9 decodeUserClanInfo uses an incorrect shift value . 173.4.10 Minor code quality issues . 173.4.11 Land's occupation will be determined exclusively by their tax 183.4.12 The pre-image of DIAMOND_STORAGE_POSITION's storage slot is known 19

1

DRA
FT

1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

DRA
FT

2 Security Review Summary
Super Sushi Samurai is a social strategy focused idle fully on-chain game, played on the telegram app andpowered by the Blast network
From Apr 8th to Apr 17th the Cantina team conducted a review of sss-game-contracts on commit hash7e647a31. The team identified a total of 34 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 3
• Medium Risk: 3
• Low Risk: 16
• Gas Optimizations: 0
• Informational: 12

3

https://github.com/threes-studio/sss-game-contracts
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c

DRA
FT

3 Findings
3.1 High Risk
3.1.1 setControllerAddresses() call can be front-run to drain the whole Diamond balance
Severity: High Risk
Context: BossHuntFacet.sol#L30, CharacterFacet.sol#L40
Description: After the contract deployment, once all the facets are added into the Diamond, a set offunction calls are needed in order to configure the different facet parameters. One of these functionsthat should be called by the contract owner is setControllerAddresses():
function setControllerAddresses(address createAccountController, address bossHuntController, address

megaWarController) onlyOwner external {↪→

s.createAccountSigner = createAccountController;

s.bossHuntAccountSigner = bossHuntController;

s.megaWarController = megaWarController;

}

This function sets the createAccountSigner and bossHuntAccountSigner addresses which will be initiallythe zero address. The signature verification is performed using ecrecover directly. See _verifyBoss-

RaidSignature() and _verifyCreateAccountSignature() functions.
However, when ecrecover is called, it performs a signature verification process, comparing the inputsignature with the calculated signature. If they match, the ecrecover function returns the address of thesigner. If they don't match or if the signature is invalid, the function returns the zero address.
Consequently, as there are no checks to invalidate a zero address being returned by the ecrecover call,the following attack vector is possible:
1. Owner deploys the Diamond contract and adds the different facets to it.
2. createAccountSigner and bossHuntAccountSigner will be equal to the address(0) at this point.
3. Attacker abuses createAccountSigner's zero address to create a valid account through the regis-

terAccount() function by simply providing an invalid signature.
4. Attacker abuses bossHuntAccountSigner's zero address to summonaboss through the summonBoss()function by again providing an invalid signature. This boss is summoned with a rewardAmount equalto the Diamond contract SSS token balance and a bossPower of 1.
5. Boss is defeated right away by the attacker who calls claimBossReward() to drain the contract claim-ing all the SSS tokens.

Impact: If certain steps during contract deployment are not executed atomically and in the right order, allthe SSS token balance can be drained from the Diamond contract.
Likelihood: Medium + Impact: Very high = Severity: High.
Recommendation: It is recommended to use the ECDSA library instead of directly using ecrecover. This li-brary will always revert if the address(0) is returnedwhen providing an invalid signature. Moreover, makesure that no SSS tokens are sent to the Diamond contract before createAccountSigner and bossHuntAc-

countSigner addresses are set.

4

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/BossHuntFacet.sol#L30
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L40
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/BossHuntFacet.sol#L137
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/BossHuntFacet.sol#L137
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L180
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol

DRA
FT

3.1.2 Users can self-approve to join any clan
Severity: High Risk
Context: MegaWarFacet.sol#L146-L166
Description: When a clan is created, the clan creator can choose if users will be required an approval tojoin the clan:
function createNewClan(uint256 landId, uint256 minMemberLevel, uint256 maxMemberLevel, bool needApproveMember)

onlyNotPaused external {↪→

_createNewClan(landId, minMemberLevel, maxMemberLevel, needApproveMember);

}

This is set in the needApproveMember parameter. However, the MegaWarFacet.approveMembers() functiondoes not check that the current approver is the actual clan creator or already a member of the clan. Con-sequently, any user can request to join any clan through the joinClan() function and then self-approveto join the clan through the approveMembers() function.
Impact: This can be abused to manipulate war results as a user could create multiple accounts, join therest of the clans with these "inactive" accounts that will never level up, until reaching the max. number ofmembers in all the other clans, forcing active users to join his clan. As the current implementation doesnot allow to leave a clan, the malicious user would put his own clan in a very good position to win the warand its respective rewards that season.
Likelihood: High + Impact: Medium = Severity: High.
Recommendation: Add access control to the MegaWarFacet.approveMembers() function by enforcing thatonly the clan owner or the owner of the landId where the clan was created can approve pending joinrequests.
3.1.3 Incorrect tax calculation in teleportToland

Severity: High Risk
Context: CharacterFacet.sol#L313
Description: The teleportToland function allows a player to teleport to a different land by paying the cur-rent land owner a tax. However, the tax amount is incorrectly calculated based on the land tax percentageof the destination land (landId) instead of the current staying land (stayingLandId).
function teleportToland(uint256 landId) onlyValidAccount onlyNotPaused external {

// ...

uint256 taxAmount = pointsCanUse * getLandTax(landId) / BASE_PERCENT;

recordLandTax(stayingLandId, taxAmount);

// ...

}

Recommendation: To fix the incorrect tax calculation, update the code to use the correct land tax per-centage based on the current staying land (stayingLandId) instead of the destination land (landId).
- uint256 taxAmount = pointsCanUse * getLandTax(landId) / BASE_PERCENT;

+ uint256 taxAmount = pointsCanUse * getLandTax(stayingLandId) / BASE_PERCENT;

5

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/MegaWarFacet.sol#L146-L166
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L313

D
R
A
F
T

3.2 Medium Risk
3.2.1 Land owner can increase the land tax at any time forcing all the users in the land to pay thetax
Severity: Medium Risk
Context: LandFacet.sol#L53-L58
Description: The land owner can change the land tax at any given time by simply calling the setLandTax()function:
function setLandTax(uint256 landId, uint256 newTaxRate) onlyLandOwner(landId) onlyNotPaused external {

// Tax should be <= 10%

if(newTaxRate > 10_00) revert OutOfRange("LANDTAX");

s.landInfo[landId].tax = newTaxRate;

emit ChangeLandTax(landId, newTaxRate);

}

However, this functionality allows multiple abusive behaviours by the land owner:
1. The land owner can set a land tax of zero, wait for the land to be full of users and then call setLand-

Tax() setting the land tax to the maximum allowed tax (10%).
2. Before the land owner calls claimPoint(), a call to setLandTax(<landId>, 0) is performed to avoidpaying the land tax. Then after, that claimPoint() call, call to setLandTax() again setting the landtax to its previous value. This can be done atomically in a single transaction.

Impact: Land owner can avoid paying taxes in his own land. Users are forced to pay the maximum landtax even if they never accepted it.
Likelihood: Medium + Impact: Medium = Severity: Medium
Recommendation: Consider adding a cooldown period for the land owners to call setLandTax(). Forexample, only allow them to call it once per month.
3.2.2 Per-type and per-item purchase limits can be exceeded on the first purchase of an item
Severity: Medium Risk
Context: LibAppStorage.sol#L344-L365, ShopFacet.sol#L23
Description: The addToBag() function enforces per-item-type and per-item limits, if configured, on userpurchases, but only if the user already holds at least one of the item being purchasing. Because buyItem-

FromShopWithPermit() allows purchasing multiple items at once, limited only by the user's token balanceand the price of the item, users can exceed these limits when purchasing an item they don't already hold.For items that don't make sense to hold multiple of, for example a specific character or pet skin, userswould bewasting funds if they purchasedmore than one due to accident ormisunderstanding. Any futuregame mechanic that relies on these item limits would also be broken as a result.
Recommendation: Enforce per-type and per-item limits regardless of whether the user already holdsthe item being purchased.
3.2.3 Centralization risk: Specific landIds can be minted to steal the accrued rewards from theusers
Severity: Medium Risk
Context: LandFacet.sol#L86
Description: In the LandFacet the function withdrawStakingReward() can only be called by the currentland owner and is used to withdraw the rewards accrued by the land:

6

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/LandFacet.sol#L53-L58
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol#L344-L365
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShopFacet.sol#L23
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/LandFacet.sol#L86

DRA
FT

function withdrawStakingReward(uint256 landId) onlyLandOwner(landId) onlyNotPaused external {

// check info

Land storage land = s.landInfo[landId];

uint256 lastRedeemTime = land.lastRedeemTime;

uint256 lockTo = lastRedeemTime + s.landRedeemCountdownDurationInSecond;

if(lastRedeemTime > 0 && block.timestamp < lockTo) {

revert StillLocked(lockTo);

}

land.lastRedeemTime = block.timestamp;

(uint256 points, uint256 reward) = LibAppStorage.stakingWithdraw(address(uint160(landId)));

// transfer pending reward to msg.sender

SafeERC20.safeTransfer(IERC20(s.sssToken), msg.sender, reward);

emit LandWithdrawRewardFromPool(landId, points, reward);

}

This function calls LibAppStorage.stakingWithdraw() casting the landId to an address. Consequently,the following scenario would be possible:
1. Alice's address (0xE6b3367318C5e11a6eED3Cd0D850eC06A02E9b90)which decimal representationis 1317064453908861503093592744126318198394025057168 has staked in the contract.
2. The owner of the LandNFT contractmints himself the nftId 1317064453908861503093592744126318198394025057168.
3. The owner of the 1317064453908861503093592744126318198394025057168 landId calls

withdrawStakingReward(1317064453908861503093592744126318198394025057168) stealing all therewards from Alice.
Impact: All the user rewards can be stolen if the Land contract is compromised or owned by a malicioususer.
Likelihood: Low + Impact: High = Severity: Medium
Recommendation: Consider enforcing in the Land contract that no landId higher than 555 can ever beminted.
3.3 Low Risk
3.3.1 Lack of mechanism to withdraw developer fee from shop revenue
Severity: Low Risk
Context: ShopFacet.sol#L60
Description: In the _buyItemFromShop() function, a portion of the shop transaction revenue is allocatedto a "dev" share, stored in the s.shopTotalTokenRevenueForDev variable. However, no function or mech-anism is provided to allow the withdrawal or distribution of these funds to the actual developers or thecontract owner.
This means that the developer revenue generated from the shop transactions will be permanently lockedin the contract, and the developers will not be able to access or use these funds unless a new facet isadded to the diamond.
contract ShopFacet {

.// ..

s.shopTotalTokenRevenue += cost;

s.shopTotalTokenRevenueForDev += devAmount;

// ...

}

Recommendation: To address this issue, consider implementing a function that allows the withdrawalof the developer revenue from the shop transactions

7

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShopFacet.sol#L60

D
R
A
F
T

3.3.2 Validate clan member levels are valid during clan creation
Severity: Low Risk
Context: MegaWarFacet.sol#L72
Description: The _createNewClan() function in MegaWarFacet allows the creation of new clans, but itdoes not perform any validation on the provided minMemberLevel and maxMemberLevel parameters. Thefunction assumes that these values are valid, but there is no check to ensure that the minMemberLevel isless than or equal to the maxMemberLevel.
Additionally, the function does not enforce any limits on the minimum andmaximum samurai levels. Thecurrent implementation allows samurai to create and level up to only level 50.
Recommendation: Consider adding the following checks in the _createNewClan function:
1. Ensure that the minMemberLevel is less than or equal to the maxMemberLevel:

require(minMemberLevel <= maxMemberLevel, "mg: minMemberLevel must be <= maxMemberLevel");

2. Ensure that the minMemberLevel and maxMemberLevel are within the expected range (e.g., be-tween 1 and 50):
require(minMemberLevel >= 1 && minMemberLevel <= 50, "mg: minMemberLevel must be between 1 and 50");

require(maxMemberLevel >= 1 && maxMemberLevel <= 50, "mg: maxMemberLevel must be between 1 and 50");

3.3.3 Registering account with self-referral
Severity: Low Risk
Context: CharacterFacet.sol#L163, LibAppStorage.sol#L292
Description: The _registerAccount function in the codebase allows users to register a new account,providing an accountOwner address and a referrer address as parameters. However, the function doesnot check if the accountOwner and referrer addresses are the same.
This means users can register a new account and select themselves as the referrer. Users could exploitthis self-referral functionality to earn referral fees on their purchases, which may not be the intendedbehavior.
Recommendation: Though the registration process happens off-chain, adding a defensive check in the
_registerAccount function is recommended to prevent such issues. This can be done by adding thefollowing conditions:
require(addresses[0] != addresses[1], "Referrer cannot be the account owner");

This will prevent users from self-referring and earning referral fees on their purchases, ensuring that thereferral system is used as intended.
3.3.4 Lack of referral fee withdrawal mechanism
Severity: Low Risk
Context: ShopFacet.sol#L64, AppStorage.sol#L29
Description: The game allows users to purchase items from the shop using the ShopFacet. Whenevera purchase is made, 5% of the purchase amount is paid to the account referrer. The totalTokenAmount-

FromReferral state variable mapped to each account tracks these referral values.
However, no mechanism exists for referrers to withdraw the accumulated referral fees from the contract.This can permanently lose these funds, as the referrers cannot claim their earned referral fees.

8

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/MegaWarFacet.sol#L72
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L163
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol#L292
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShopFacet.sol#L64
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/AppStorage.sol#L29

DRA
FT

contract ShopFacet {

// ...

function _buyItemFromShop(address accountOwner, uint256 itemType, uint256 itemId, uint256

willingToPayAmount) internal {↪→

// ...

if(refAccount.createdTime != 0) {

refAccount.totalTokenAmountFromReferral += refAmount;

_proccesReferralPetSpeedBuff(reffererAddress, refAccount);

} else {

burnAmount += refAmount;

}

// ...

}

}

// ...

Recommendation: Consider implementing a mechanism that allows referrers to withdraw the accumu-lated referral fees from the contract.
3.3.5 maxLandId is configurable but the code would break if it were ever changed
Severity: Low Risk
Context: ConfigFacet.sol#L58, LandFacet.sol#L63, LandFacet#L41, LibAppStorage.sol#L129
Description: The maxLandId value can change, but in several places the code clearly lacks logic to dealwith this possibility. The two indicated calculations in LandFacet.sol (lines 63 and 41) can cause rever-sion due to underflow if maxLandId is ever increased enough to make s.LandTaxRewardPoolTotalPoints

/ s.config[1].maxLandId less than the tax collected fromone ormore lands. OTOH, the check on line 129of LibAppStorage.sol will be incorrect if maxLandId is ever decreased (as lands will exist with higher ids butbe incorrectly classified as user accounts). This list of breakagesmay not be exhaustive, but demonstrateshow the code is unprepared to deal with changes to maxLandId.
Recommendation: Consider making it impossible for maxLandId to change after it is set, or modify thecode to be able to deal with changes to it. For example, the calculation in LandFacet.stakeAllPoints()could be modified to:
uint256 canClaimFromPoolPoints =

pointsPerLandInThePool > s.landInfo[landId].totalPointsCollectedFromPool

? pointsPerLandInThePool - s.landInfo[landId].totalPointsCollectedFromPool

: 0;

which would allow tax points to be staked even if no points are available to claim from the pool.
The check in LibAppStorage.sol could be modified to use a new variable that denotes the maximumpossible maximum land if it is envisioned maxLandId might decrease (though this seems unlikely andproblematic in other ways, e.g. for users holding land NFTs).
3.3.6 Uses of ERC20 permits are vulnerable to griefing via frontrunning
Severity: Low Risk
Context: ShopFacet.sol#L23, CharacterFacet.sol#L56, CharacterFacet.sol#L77, CharacterFacet.sol#L236
Description: The usages of the permit ERC20 extension in the code can be frontrun by any party thatwitnesses transactions prior to block inclusion. This is a griefing vector that will cause user transactionsto fail if the associated permit has already been consumed. See this for more details. While the riskof this seems quite low (very little incentive to perform the attack, and if the centralized sequencer istrustworthy, it will not grief users or reveal their transaction inappropriately), it could be quite annoyingfor users, although ultimately they will be able to work around it.
Recommendation: Consider implementing an allowance check as a fallback if permit validation fails, sothat transactions for which the permit was already consumed do no revert. Or, at least document the riskand justify why no action is deemed necessary.

9

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ConfigFacet.sol#L58
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/LandFacet.sol#L63
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/LandFacet.sol#L41
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol#L129
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShopFacet.sol#L23
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L56
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L77
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L236
https://www.trust-security.xyz/post/permission-denied

DRA
FT

3.3.7 Showdown winner selection randomness is extremely weak
Severity: Low Risk
Context: ShowdownFacet.sol#L89
Description: A "random" number is used to decide the winner of a showdown:
uint256 random = uint256(keccak256(abi.encodePacked(block.timestamp, block.coinbase, block.gaslimit,

block.number, showdown.opener, showdown.attacker, showdown.openTime, showdown.attackTime)));↪→

This randomness seems almost dangerously weak. An attacker will know showdown.opener,
showdown.attacker, and showdown.openTime with certainty. Data from Blast block explorerssuggests block.gaslimit is currently fixed at 30,000,000. showdown.attackTime will be the same as
block.timestamp, and that value can be predicted to belong to a fairly small set of possibilities (blockson Blast are only a few seconds apart, and transaction inclusion is high-probability). block.number is alsobasically known/under control of the attacker. The only remaining input is block.coinbase; Blast seemsto use a centralized sequencer currently, so this value is likely a constant as well. Even if multiple valuesare possible, it's probably not a huge set.
All things considered, it's likely quite easy for attackers to write bots that calculate which showdowns theycan bluff at any given time with a much higher probability of success than the code intends. If they don'tlike their odds, they simply wait a few seconds. This will greatly favor users that attack rather than startshowdowns.
Recommendation: Use stronger randomness that is less under control of the attacker. Assuming Blastsupports the PREVRANDAO opcode correctly, that is an option (as it is based on a fork of Optimism, it shouldhave the same modified support that Optimism does).
3.3.8 No mechanism to withdraw MegaWar fees
Severity: Low Risk
Context: MegaWarFacet.sol#L78, AppStorage.sol#L257
Description: The game contains logic for collecting a fee when a clan is created, which is tracked by the
megawarTotalFeeCollected storage field. The is a storage field called megawarTotalFeeWithdrawn that ispresumably for tracking withdrawals of this fee, but there is no mechanism for actually withdrawing it orincreasing the withdrawal-tracking field. Thus the fee, if collected, is lost.
Recommendation: Add a mechanism to withdraw this fee, or eliminate it.
3.3.9 sssToken burnt by the ShopFacet instead of shopToken
Severity: Low Risk
Context: ShopFacet.sol#L69
Description: Users pay for items from the shop using the shopToken ERC20. A cut of all purchase proceedsis reserved to benefit the referrer of the user making the purchase; if there is no referrer, this amountis burned instead. However, the burn call is made to the sssToken ERC20. In the current game design,
shopToken and sssToken are actually the same, so there are no negative consequences at the moment.However, if these tokens ever differ in the future, the codewill be wrong and result in erroneously burning
sssToken instead of shopToken.
Recommendation: Use the shopToken ERC20 exclusively in the ShopFacet, or eliminate shopToken anduse only sssToken.

10

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShowdownFacet.sol#L89
https://docs.optimism.io/stack/differences
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/MegaWarFacet.sol#L78
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/AppStorage.sol#L257
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShopFacet.sol#L69

D
R
A
F
T

3.3.10 Staking account counter increased and decreased inconsistently
Severity: Low Risk
Context: LibAppStorage.sol#L105, LibAppStorage.sol#L150
Description: Both normal users and lands can have staking deposits. The stakingAccoutCount variableis incremented every time any new address stakes, but it is only decremented when normal users (notlands) unstake. While stakingAccoutCount has no functionwithin the current codebase, this inconsistencycould cause issues for any UIs, bots, or other contracts that rely on this value.
Recommendation: Make the incrementing and decrementing logic for stakingAccoutCount consistent.
3.3.11 Direct usage of ecrecover allows signature malleability
Severity: Low Risk
Context: BossHuntFacet.sol#L137, CharacterFacet.sol#L180
Description: The _verifyBossRaidSignature() and _verifyCreateAccountSignature() functions call theSolidity ecrecover function directly to verify the given signatures. However, the ecrecover EVM opcodeallows malleable (non-unique) signatures and thus is susceptible to replay attacks. Although a replayattack is not possible in both functions, ensuring the signatures are not malleable is considered a bestpractice (and so is checking _signer != address(0), where address(0)means an invalid signature).
Impact: Unfollowed best practice.
Likelihood: Low + Impact: Low = Severity: Low
Recommendation: It is recommended to use the recover function from OpenZeppelin's ECDSA libraryfor signature verification.
3.3.12 Lack of a two-step transfer ownership pattern
Severity: Low Risk
Context: OwnershipFacet.sol#L13-L16
Description: The ownership transfer process for the Diamond contract involves the current owner callingthe transferOwnership() function. If the nominated EOA account is not a valid account, it is possible thatthe owner may accidentally transfer ownership to an uncontrolled account thereby losing access to allfunctions with the onlyOwnermodifier.
All the Diamond setter functions use the onlyOwnermodifier.
Impact: All onlyOwner functions may become unusable.
Likelihood: Very Low + Impact: High = Severity: Low
Recommendation: It is recommended to implement a two-step ownership transfer where the ownernominates a new owner and the nominated account explicitly accepts ownership. This ensures the nomi-nated EOA account is a valid and active account. This can be achieved by using an implementation similarto the OpenZeppelin's Ownable2Step library.
3.3.13 Lack of incentives to keep a pet in a "healthy" state
Severity: Low Risk
Context: CharacterFacet.sol#L257
Description: In the CharacterFacet the function feedPet() is used to feed a pet in order to avoid the petentering in a sick state:

11

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol#L105
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol#L150
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/BossHuntFacet.sol#L137
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L180
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/OwnershipFacet.sol#L13-L16
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.8/contracts/access/Ownable2Step.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L257

D
R
A
F
T

// feed food for pet to increase live time

function feedPet(uint256 foodId) onlyValidAccount onlyNotPaused external {

Account storage account = s.accounts[msg.sender];

LibAppStorage.removeFromBag(msg.sender, FOOD_TYPE_ID, foodId, 1);

uint256 petLevel = account.petLevel;

if(petLevel < 1) revert OutOfRange("PETLEVEL");

// Check if pet is sick, dont check sick pet

// if (account.petDeathTime < block.timestamp) revert SickPet();

// decrease 1% duration for each level of pet, assume max level is 50

uint256 foodDuration = s.foodEffectDurations[foodId];

foodDuration = foodDuration * (101 - petLevel) / 100;

// duration is not accumulated

account.petDeathTime = block.timestamp + foodDuration;

emit FeedPet(msg.sender, foodId, block.timestamp + foodDuration);

}

If a pet is sick the following penalties are applied:
1. Shop referral speed buff will not be given.
2. It's speed is reduced by 90%.
3. Can not be leveled up.

Moreover, if the pet is sick and is given food, it will enter into a healthy state automatically and its new
petDeathTime will be set as account.petDeathTime = block.timestamp + foodDuration instead of beingset as account.petDeathTime += foodDuration. Consequently, the optimal approach for users will alwaysbe:
1. Max. out samurai level without caring about the pet level.
2. Feed the pet (if its sick) and right away leveling up the pet to max.
3. Wait for the levelUpUnlockTime to be reached.
4. Feeding the pet again before calling claimLevelUpSpentToken() and claimPoints().

For this whole process only 2 food items at worst would have to be bought by the users from the shop.
Impact: Users will only buy food from the shop in the situation mentioned.
Likelihood: High + Impact: Very low = Severity: Low
Recommendation: Consider updating the feedPet() function as shown below:
- account.petDeathTime = block.timestamp + foodDuration;

+ account.petDeathTime += foodDuration;

This would force the users to level up their pet as soon as possible and also to buy more food from theshop.
3.3.14 Some rewards may be lost if gameStakingPoolPercent + landPoolPercent is not equal to

BASE_PERCENT

Severity: Low Risk
Context: LibAppStorage.sol#L29-L44, ConfigFacet.sol#L127-L138
Description: The following state variables are used just for tracking purposes:

• bossPoolTaxTotalReward (increased in reward * s.bossPoolPercent / BASE_PERCENT).
• megawarPoolTaxTotalReward (increased in reward * s.megawarPoolPercent / BASE_PERCENT).

However, they are assigned a percentage of the total rewards in the setTaxRewardSubPercentConfig()function:

12

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol#L29-L44
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ConfigFacet.sol#L127-L138

DRA
FT

function setTaxRewardSubPercentConfig(

uint256 gamePoolPercent,

uint256 landPoolPercent,

uint256 bossPoolPercent,

uint256 megawarPoolPercent

) onlyOwner external {

// total for game is 1.6%

s.gameStakingPoolPercent = gamePoolPercent;

s.bossPoolPercent = bossPoolPercent;

s.megawarPoolPercent = megawarPoolPercent;

s.landPoolPercent = landPoolPercent;

}

If gameStakingPoolPercent + landPoolPercent is not equal to BASE_PERCENT(100_00) due to some frac-tion being added to bossPoolPercent or megawarPoolPercent a portion of the rewards collected from thecommunity taxes will remain in the contract and not be distributed:
function syncTaxOfGameFromToken() internal {

AppStorage storage s = appStorage();

if(ISSS(s.sssToken).communityTaxTokenAmountAvailable()> 0) {

try ISSS(s.sssToken).claimCommunityTax() returns (uint256 reward) {

// Split the reward for: staking pool, land, boss, megawar

uint256 rewardForStaking = reward * s.gameStakingPoolPercent / BASE_PERCENT;

s.stakingNewReward += rewardForStaking;

s.landPoolTaxTotalReward += reward * s.landPoolPercent / BASE_PERCENT;

s.bossPoolTaxTotalReward += reward * s.bossPoolPercent / BASE_PERCENT; // <---------------

s.megawarPoolTaxTotalReward += reward * s.megawarPoolPercent / BASE_PERCENT; // <---------

s.afkGamePoolTaxTotalReward += rewardForStaking;

} catch {

// do nothing

}

}

}

Impact: Lower accrued rewards for users. A portion of the rewards collected from the community taxeswill remain in the contract and not be distributed.
Likelihood: Low + Impact: Medium = Severity: Low
Recommendation: Consider enforcing at smart contract level that gameStakingPoolPercent + land-

PoolPercent is equal to BASE_PERCENT.
3.3.15 _proccesReferralPetSpeedBuff() does not consider the amount of items being bought
Severity: Low Risk
Context: ShopFacet.sol#L84-L107
Description: In the ShopFacet the function _proccesReferralPetSpeedBuff() is used to calculate thespeed buff that the referrer will receive after an item was purchased from the shop. However, the theamount of items being bought are not taken into account during the calculation meaning that buying3 items will result in the same speed buff than buying one (as long as this is done in a single buyItem-

FromShop() call). However, if, for example, the 3 items are bought in 3 separate buyItemFromShop() calls,the referral will receive the speed buff with every call resulting in an speed buff 3 times higher that if hehad just called buyItemFromShop() once buying the 3 items.
Impact: Referral speed buff is not applied correctly when more than one item is bought.
Likelihood: High + Impact: Very low = Severity: Low
Recommendation: It is recommended to take into account also the amount of items being bought in thespeed buff calculation in the _proccesReferralPetSpeedBuff() function.

13

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShopFacet.sol#L84-L107

D
R
A
F
T

3.3.16 First user calling claimPointwill receive all the accrued rewards since contract deploymentuntil the second call to claimPoint

Severity: Low Risk
Context: LibAppStorage.sol#L46-L71
Description: The function stakingUpdatePool() is used to update the stakingAccRewardPerShare statevariable:
function stakingUpdatePool() internal {

AppStorage storage s = appStorage();

// Get reward from token tax pool

syncTaxOfGameFromToken();

if(s.stakingTotalDepositSupply == 0) {

return;

}

(uint256 reward, bool needUpdated) = getRewardWithPromotion();

if(needUpdated) {

s.promotionUpdatedBlock = block.number;

}

// overflow check

// max reward is 10^52 = (total deposit supply * 10^18) * REWARDS_PRECISION < 2^256

// MAX_POINT_PER_SECOND = 400000 * 10^18

// MAX_POINT_PER_YEAR = 400000 * 10^18 * 365 * 24 * 60 * 60 = 0.126144 * 10^32

// if there is 10M (10^7) of players, MAX_POINT_PER_YEAR = 0.126144 * 10^39

// then stakingTotalDepositSupply is still less than 2^256

uint256 rewardPerShare = reward * REWARDS_PRECISION / s.stakingTotalDepositSupply;

if(rewardPerShare > 0) {

s.stakingAccRewardPerShare += rewardPerShare;

s.stakingNewReward = 0;

}

}

However, stakingAccRewardPerSharewill only be increased once stakingTotalDepositSupply is differentthan zero. And this will only occur after the first call to the claimPoint() function. Consequently, the firstuser that calls the claimPoint() function will receive all the accrued rewards since contract deployment.
Impact: "Unfair" distribution of the initial accrued rewards.
Likelihood: High + Impact: Very low = Severity: Low.
Recommendation: Consider updating the stakingUpdatePool() function logic to prevent this issue.
3.4 Informational
3.4.1 Declare petTypeId and samuraiTypeId as constants
Severity: Informational
Context: CharacterFacet.sol#L108, CharacterFacet.sol#L355, CharacterFacet.sol#L363,LibAppStorage.sol#L335
Description: To add an element to a bag, there is a unique item type and ID. However, the item types forSamurai and Pets are identified as 1 and 2, respectively. Instead of declaring these values as constants,they are declared/hardcoded as magic numbers in multiple instances across the entire codebase.
For example, In the changeset and changeSamurai functions, the petTypeId and samuraiTypeId values aredeclared as 2 and 1, respectively. These values are used to access the player's bags and check if the playerowns the specified pet or samurai.
Since these values are not expected to change throughout the contract's lifetime, it would be more effi-cient and logical to declare them as constant variables.
Recommendation: Consider declaring petTypeId and samuraiTypeId as constant variables at the con-tract level and then using these constants in the changePet, changeSamurai, and createAccount functions.This makes the code more readable, maintainable, and less prone to errors.

14

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol#L46-L71
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L108
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L355
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L363
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol#L335

DRA
FT

+ uint256 constant PET_TYPE_ID = 2;

+ uint256 constant SAMURAI_TYPE_ID = 1;

3.4.2 Add zero checks to prevent creation of empty locks
Severity: Informational
Context: File.sol#L123
Description: The current Lock contract implementation needs checks to prevent the creation of emptylocks, where the contract is deployed without any initial funds. This can lead to a situation where thecontract is deployed, but no funds can be withdrawn, as the contract balance is 0.
Recommendation: To prevent the creation of empty locks, consider adding a check in the constructorto ensure that the contract is deployed with a non-zero balance. This can be done by adding a requirestatement that checks the initial contract balance:

constructor(uint256 _unlockTime) payable {

require(block.timestamp < _unlockTime, "Unlock time should be in the future");

+ require(msg.value > 0, "Contract must be deployed with non-zero balance");

unlockTime = _unlockTime;

owner = payable(msg.sender);

}

3.4.3 Use call Instead of transfer for native token transfers
Severity: Informational
Context: Lock.sol#L32
Description: The current implementation uses the transfer function to send a native token from the Lockcontract to an external address. The transfer function is limited to 2300 gas, which may not be enoughfor all contract interactions.
This can lead to potential issues, such as the transfer failing if the receiving contract has a fallback functionthat requires more than 2300 gas to execute.
Recommendation: Instead of using the transfer function, consider using the callmethod to sendnativetokens from the contract to an external address. The call function does not have the 2300 gas limit andallows for more complex contract interactions.

function withdraw() public {

require(block.timestamp >= unlockTime, "You can't withdraw yet");

require(msg.sender == owner, "You aren't the owner");

emit Withdrawal(address(this).balance, block.timestamp);

- owner.transfer(address(this).balance);

+ payable(owner).call{value: address(this).balance}("");

}

3.4.4 Remove unused/debugging helper file imports
Severity: Informational
Context: CharacterFacet.sol#L7, BossHuntFacet.sol#L5-L8, ConfigFacet.sol#L7-L9, LandFacet.sol#L8-L11, MainGameFacet.sol#L6-L7, MegaWarFacet.sol#L7, MegaWarFacet.sol#L10, ShopFacet.sol#L8,ShopFacet.sol#L5, ShowdownFacet.sol#L5, ShowdownFacet.sol#L7-8, ShowdownFacet.sol#L10-12,AppStorage.sol#L3, LibAppStorage.sol#L2, LibAppStorage.sol#L5, Lock.sol#L5, Lock.sol#L25
Description: Multiple files across the entire repository contain an import statement not used anywherein the contract (or) and used for debugging purposes during development.
Importing unused libraries can increase the contract's deployment and execution gas costs andmake thecodebase less readable and maintainable.
Recommendation: Consider removing the unused and debugging file imports from multiple contractsacross the repository to optimize the gas costs and improve the code quality.

15

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/Lock.sol#L32
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L7
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/BossHuntFacet.sol#L5-L8
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ConfigFacet.sol#L7-L9
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/LandFacet.sol#L8-L11
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/LandFacet.sol#L8-L11
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/MainGameFacet.sol#L6-L7
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/MegaWarFacet.sol#L7
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/MegaWarFacet.sol#L10
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShopFacet.sol#L8
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShopFacet.sol#L5
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShowdownFacet.sol#L5
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShowdownFacet.sol#L7-8
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShowdownFacet.sol#L10-12
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/AppStorage.sol#L3
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol#L2
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol#L5
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/Lock.sol#L5
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/Lock.sol#L25

DRA
FT

3.4.5 Return if claimId (or) seasonId is zero in _recordClanLevel()

Severity: Informational
Context: CharacterFacet.sol#L123
Description: The _recordClanLevel function does not check for cases where the decoded clanId and
seasonId from the currentClanInfos function are zero. In that case, the function will still attempt toaccess the s.megaWars and s.clansmappings, which does not impact the game/user.
Hence, returning if the clanId and seasonId are zero is more logical.
Recommendation: To mitigate this potential issue, consider adding a check at the beginning of the _-

recordClanLevel function to ensure that the decoded clanId and seasonId are not zero before proceed-ing with the rest of the function logic.
if (clanId == 0 || seasonId == 0) {

return;

}

3.4.6 Add missing license identifiers
Severity: Informational
Context: BossHuntFacet.sol, CharacterFacet.sol, ConfigFacet.sol, LandFacet.sol, MainGameFacet.sol,MegaWarFacet.sol, RewardPoolFacet.sol, ShopFacet.sol, ShowdownFacet.sol, BlastFacet.sol,AppStorage.sol, LibAppStorage.sol, Modifiers.sol, UniswapV2Helper.sol
Description: All Solidity files should include a license identifier at the top to communicate the licensingterms under which the code is distributed. This helps ensure legal compliance and transparency for usersand contributors.
The lack of a license identifier could lead to ambiguity and potential legal issues, as the default copyrightlaws may apply, which may not align with the project's intended licensing terms.
The license identifiers are added to each facet in the diamond reference implementation by Nick Mudgen.
Recommendation: Consider adding a license identifier, such as SPDX-License-Identifier: MIT or an-other appropriate license, at the top of each Solidity file in the project.
3.4.7 Replace deprecated block.difficulty in weakRandom()

Severity: Informational
Context: LibAppStorage.sol#L158
Description: The current implementation of the weakRandom function uses block.difficulty as one ofthe inputs to the pseudo-random number generation. However, block.difficulty has been deprecatedand is no longer recommended for use in favor of block.prevrandao.
Recommendation: Consider using 'block.prevrandaoinstead ofblock.difficulty‘ if the blast sequenceroffers support.
Blast, being based on a fork ofOptimism, likely uses the samePREVRANDAO implementation asOptimism,although this should be confirmed before usage as the prevrandao values are set by the sequencer:

function weakRandom(bytes memory seed) internal view returns (uint256) {

- return uint256(keccak256(abi.encodePacked(block.timestamp, block.difficulty, msg.sender, seed)));

+ return uint256(keccak256(abi.encodePacked(block.timestamp, block.prevrandao, msg.sender, seed)));

}

16

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L123
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/BossHuntFacet.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ConfigFacet.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/LandFacet.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/MainGameFacet.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/MegaWarFacet.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/RewardPoolFacet.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShopFacet.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/ShowdownFacet.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/BlastFacet.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/AppStorage.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/Modifiers.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/UniswapV2Helper.sol
https://github.com/mudgen/diamond-3/blob/master/contracts/facets/Test1Facet.sol
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol#L158
https://docs.optimism.io/stack/differences

D
R
A
F
T

3.4.8 Underflow in findUpperBound can cause an unintended revert
Severity: Informational
Context: LibAppStorage.sol#L476
Description: The findUpperBound function opens with a series of checks:
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {

uint256 len1 = array.length - 1;

if (array.length == 0 || array[0] < element) {

return 0;

}

if(array[len1] > element) {

return array.length;

}

// ...

The computation of len1 will cause a revert due to underflow if array.length == 0, contradicting theintention of the next check to return 0 in this case.
Recommendation: Move the computation of len1 after the explicit array.length == 0 check:
- uint256 len1 = array.length - 1;

if (array.length == 0 || array[0] < element) {

return 0;

}

+ uint256 len1 = array.length - 1;

3.4.9 decodeUserClanInfo uses an incorrect shift value
Severity: Informational
Context: LibAppStorage.sol#L531
Description: decodeUserClanInfo() is implemented as follows:
function decodeUserClanInfo(uint256 info) internal pure returns (uint256 clanId, uint256 seasonId) {

clanId = info >> 64;

seasonId = (info << 224) >> 224;

}

Strictly speaking, the shift used for the seasonId should only be 192 (since 64 + 192 = 256). While it isalmost certainly impossible for seasonId to reach 232 in practice, if that ever happened this would returnthe wrong value.
Recommendation: Use 192 instead of 224 for the seasonId shifts to be strictly correct.
3.4.10 Minor code quality issues
Severity: Informational
Context: AppStorage.sol#L89, AppStorage.sol#L206, CharacterFacet.sol#L372, CharacterFacet.sol#L310
Description: The codebase contains minor typos and naming inconsistencies that should be addressedfor better code quality and maintainability.
AppStorage.sol
struct LevelSpeeAndCost { // typo: LevelSpeedCost (d is missing)

// ...

}

struct AppStorage {

// ...

uint256 stakingAccoutCount; // stakingAccountCount(n is missing)

}

CharacterFacet.sol

17

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol#L476
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibAppStorage.sol#L531
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/AppStorage.sol#L89
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/AppStorage.sol#L206
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L372
https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L310

DRA
FT

contract CharacterFacet {

// ...

(,uint256 totalPointAvaible) = LibAppStorage.recordAvailablePoint(msg.sender); // totalPointAvailable

(Avaible -> Available)↪→

// ...

function caclculateMaxPlayerPerLand(uint256 totalPlayer) { // calculateMaxPlayerPerLand

// ...

}

}

Recommendation: Consider fixing the typos and naming inconsistencies identified in the code to im-prove code quality and maintainability.
3.4.11 Land's occupation will be determined exclusively by their tax
Severity: Informational
Context: CharacterFacet.sol#L288
Description: With the current game implementation, the attractiveness of a Land is only determined byits tax and of course limited by the current players in that Land as there is a maximum of 50 players perland. Consequently, the land with the lowest tax will probably be the land with most players as that is theland that will maximize users rewards.
This is because when the points are claimed in the claimPoint() function a tax that is sent to the landowner is applied. This taxAmount is calculated as pointsCanUse * getLandTax(landId) / BASE_PERCENT.Users will always try to be in the land with the lowest tax to stake as many points as possible:
// Claim point and move it to the staking pool

function claimPoint() onlyValidAccount onlyNotPaused external {

Account storage account = s.accounts[msg.sender];

if (account.petLevel == 0) revert InvalidAcount();

if(account.startUnlockSpentTokenTime != 0) revert StillLocked(account.levelUpUnlockTime);

// Calculate pending coin: samurai point

// Calculate Available point: pet point

(, uint256 totalPending) = LibAppStorage.recordPendingPoint(msg.sender);

(, uint256 totalAvailablePoint) = LibAppStorage.recordAvailablePoint(msg.sender);

// Get min of totalPending and totalAvailablePoint

uint256 pointsCanUse = Math.min(totalPending, totalAvailablePoint);

account.pointPending -= pointsCanUse;

// account.pointAvailable -= pointsCanUse;

account.pointAvailable = 0; // reset available point to 0

// Calculate land-reward based on the land tax setting

// 10% of land-reward goes to the land pool

// 90% of land-reward goes to the land owner

uint256 landId = account.stayingAtLandId;

uint256 taxAmount = pointsCanUse * getLandTax(landId) / BASE_PERCENT;

recordLandTax(landId, taxAmount);

// Move total point to reward pool

LibAppStorage.stakingDeposit(msg.sender, pointsCanUse-taxAmount);

emit ClaimPoint(msg.sender, pointsCanUse - taxAmount, taxAmount);

}

Impact: Lands occupation will be determined exclusively by their tax. Land with the lowest tax will alwaysbe full.
Likelihood: High + Impact: Very low = Severity: Informational
Recommendation: Consider adding some extra game rules that affect the attractiveness of a land apartfrom its land tax.

18

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/facets/game/CharacterFacet.sol#L288

DRA
FT

3.4.12 The pre-image of DIAMOND_STORAGE_POSITION's storage slot is known
Severity: Informational
Context: LibDiamond.sol#L31
Description: The preimage of the hashed storage slot DIAMOND_STORAGE_POSITION is known.
Impact: Unfollowed best practice.
Likelihood: High + Impact: None = Severity: Informational
Recommendation: It might be best to subtract 1 so that the preimage would not be easily attainable. Asan example, this is the technique that OpenZeppelin uses.

19

https://github.com/threes-studio/sss-game-contracts/blob/7e647a313e3a6da3599e11cae792e8b13b3a443c/contracts/libraries/LibDiamond.sol#L31

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	setControllerAddresses() call can be front-run to drain the whole Diamond balance
	Users can self-approve to join any clan
	Incorrect tax calculation in teleportToland

	Medium Risk
	Land owner can increase the land tax at any time forcing all the users in the land to pay the tax
	Per-type and per-item purchase limits can be exceeded on the first purchase of an item
	Centralization risk: Specific landIds can be minted to steal the accrued rewards from the users

	Low Risk
	Lack of mechanism to withdraw developer fee from shop revenue
	Validate clan member levels are valid during clan creation
	Registering account with self-referral
	Lack of referral fee withdrawal mechanism
	maxLandId is configurable but the code would break if it were ever changed
	Uses of ERC20 permits are vulnerable to griefing via frontrunning
	Showdown winner selection randomness is extremely weak
	No mechanism to withdraw MegaWar fees
	sssToken burnt by the ShopFacet instead of shopToken
	Staking account counter increased and decreased inconsistently
	Direct usage of ecrecover allows signature malleability
	Lack of a two-step transfer ownership pattern
	Lack of incentives to keep a pet in a "healthy" state
	Some rewards may be lost if gameStakingPoolPercent + landPoolPercent is not equal to BASE_PERCENT
	_proccesReferralPetSpeedBuff() does not consider the amount of items being bought
	First user calling claimPoint will receive all the accrued rewards since contract deployment until the second call to claimPoint

	Informational
	Declare petTypeId and samuraiTypeId as constants
	Add zero checks to prevent creation of empty locks
	Use call Instead of transfer for native token transfers
	Remove unused/debugging helper file imports
	Return if claimId (or) seasonId is zero in _recordClanLevel()
	Add missing license identifiers
	Replace deprecated block.difficulty in weakRandom()
	Underflow in findUpperBound can cause an unintended revert
	decodeUserClanInfo uses an incorrect shift value
	Minor code quality issues
	Land's occupation will be determined exclusively by their tax
	The pre-image of DIAMOND_STORAGE_POSITION's storage slot is known

