
OFFSIDE LABS

Flash.Trade
Smart Contract
Security Assessment

May 2025

Prepared for:
Flash.Trade

Prepared by:
Offside Labs
Yao Li
Moon Liang

Contents

1 About Offside Labs 2

2 Executive Summary 3

3 Summary of Findings 4

4 Key Findings and Recommendations 5
4.1 Unsettled Lock Fees Overwritten in ExecuteLimitOrder Instruction 5
4.2 Remove Custody Will Cause Custody ID Misalignment 6
4.3 Incorrect Receive Custody ID Verification for Trigger Order 7
4.4 Lack of Price Slippage Protection in ExecuteLimitOrder Instruction 8
4.5 Multiple Permissions Never Checked in Corresponding Instructions 9
4.6 Unreasonable Fee Discount and Rebate When Insolvent Position Close 10
4.7 Borrow Rate Updating of Collateral Custody May be Skipped in CloseAndSwap

Instruction . 11
4.8 Referee Can Steal Rebate Due to Unverified Remaining Account 12
4.9 Remove Instructions Cannot be Executed When Multisig Threshold Exceeds One 13
4.10 Reimburse Instruction Cannot be Executed Normally When Multisig Threshold

Exceeds One . 14
4.11 Single Singer Can Bypass Threshold of Multisig in AddInternalOracle Instruction 15
4.12 Position Profit May Benefit from Precision Loss in Entry Price Calculation . . . 16

5 Disclaimer 18

1 About Offside Labs

OffsideLabs standsasapre-eminent security research team, comprisinghighly skilledhackers
with top - tier talent from both academia and industry.

The teamdemonstrates extensive and diverse expertise inmodern software systems, which en-
compasses yet are not restricted to browsers, operating systems, IoT devices, and hypervisors.
Offside Labs is at the forefront of innovative domains suchas cryptocurrenciesandblockchain
technologies. The team achieved notable accomplishments including the successful execution
of remote jailbreaks on devices like the iPhone and PlayStation 4, as well as the identification
and resolution of critical vulnerabilities within the Tron Network.

Offside Labs actively involves in and keeps contributing to the security community. The team
was the winner and co-organizer for the DEFCON CTF, the most renowned CTF competition in
Web2. The team also triumphed in the Paradigm CTF 2023 in Web3. Meanwhile, the team has
been conducting responsible disclosure of numerous vulnerabilities to leading technology com-
panies, including Apple, Google, andMicrosoft, safeguarding digital assets with an estimated
value exceeding $300million.

During the transition to Web3, Offside Labs has attained remarkable success. The team has
earned over $9 million in bug bounties, and three of its innovative techniques were acknowl-
edged as being among the top 10 blockchain hacking techniques of 2022 by the Web3 security
community.

OFFSIDE LABS 2

2 Executive Summary

Introduction

Offside Labs completed a security audit of Flash.Trade smart contracts, starting on March 03,
2025, and concluding on April 22, 2025.

Project Overview

Flash.Trade is a decentralized asset-backed perpetuals and spot exchange on Solana offering
up to 100x leverage, low fees, and minimal price impact via a pool-to-peer model. Liquidity
providers earn real yield through trading fees, supported by dynamic pricing via Pyth and
backup oracles. Initially funded by evolving 3D NFTs, Flash transitioned to the FAF token, un-
locking new rewards, governance, and utility for the ecosystem.

Audit Scope

The assessment scope contains mainly the smart contracts of the perpetuals program for the
Flash.Trade project. The audit is based on the following specific branches and commit hashes
of the codebase repositories:

• Flash.Trade
• Codebase: https://github.com/flash-trade/flash-contracts-closed
• Commit Hash: 017e978b48e7ff0d8b28a5c62ee1ee3d96a924ea

We listed the files we have audited below:

• Flash.Trade
• programs/perpetuals/**/*.rs

Findings

The security audit revealed:

• 1 critical issues
• 2 high issues
• 7 medium issues
• 2 low issues
• 0 informational issue

Further details, including the nature of these issues and recommendations for their remedia-
tion, are detailed in the subsequent sections of this report.

OFFSIDE LABS 3

https://github.com/flash-trade/flash-contracts-closed

3 Summary of Findings

ID Title Severity Status

01 Unsettled Lock Fees Overwritten in
ExecuteLimitOrder Instruction Critical Fixed

02 Remove Custody Will Cause Custody ID Misalignment High Fixed

03 Incorrect Receive Custody ID Verification for
Trigger Order High Fixed

04 Lack of Price Slippage Protection in
ExecuteLimitOrder Instruction Medium Fixed

05 Multiple Permissions Never Checked in
Corresponding Instructions Medium Fixed

06 Unreasonable Fee Discount and Rebate When
Insolvent Position Close Medium Fixed

07 Borrow Rate Updating of Collateral Custody May be
Skipped in CloseAndSwap Instruction Medium Fixed

08 Referee Can Steal Rebate Due to Unverified
Remaining Account Medium Fixed

09 Remove Instructions Cannot be Executed When
Multisig Threshold Exceeds One Medium Fixed

10 Reimburse Instruction Cannot be Executed Normally
When Multisig Threshold Exceeds One Medium Fixed

11 Single Singer Can Bypass Threshold of Multisig in
AddInternalOracle Instruction Low Fixed

12 Position Profit May Benefit from Precision Loss
in Entry Price Calculation Low Fixed

OFFSIDE LABS 4

4 Key Findings and Recommendations

4.1 Unsettled Lock Fees Overwritten in ExecuteLimitOrder Instruction

Severity: Critical Status: Fixed

Target: Smart Contract Category: Logic Error

Description

In the execute_limit_order instruction,whenapositionalready exists (position.size
_usd > 0), the logic is intended to increment the position bymerging two positions. How-
ever, the value of unsettled_fees_usd is overwritten instead of being accumulated. This
means the cumulative unsettled lock fees are wiped out rather than added to the existing
value.

Here is the relevant code snippet:

322 if position.size_usd > 0 {

323 // increment existing position (add collateral + increase size)

324 position.unsettled_fees_usd =

collateral_custody.get_lock_fee_usd(&position, curtime)?;↪

325 position.increment(&collateral_min_price, &delta_position)?;

326 position.cumulative_lock_fee_snapshot =

327 collateral_custody.get_cumulative_lock_fee(curtime)?;

328 position.update_time = curtime;

programs/perpetuals/src/instructions/execute_limit_order.rs#L322-L328

Impact

This bug allows users to exploit the system and avoid paying accumulated lock fees. By re-
peatedly using limit orders, users can reset the unsettled_fees_usd field to a lower value
or even zero. This could result in significant loss of revenue for the protocol and incentivize
exploitative behavior.

Recommendation

Update the logic for unsettled_fees_usd to ensure the new lock fee is added to the exist-
ing value, rather than overwriting it.

Mitigation Review Log

Updated the logic for unsettled_fees_usd in both execute_limit_order and
execute_limit_order_with_swap instructions to account for previously unsettled lock
fees.

OFFSIDE LABS 5

https://github.com/flash-trade/flash-contracts-closed/blob/017e978b48e7ff0d8b28a5c62ee1ee3d96a924ea/programs/perpetuals/src/instructions/execute_limit_order.rs#L322-L328

Fixed in commit 8dd9f3732d4f06e20e97f335841e88fbb53f37ba.

4.2 Remove CustodyWill Cause Custody IDMisalignment

Severity: High Status: Fixed

Target: Smart Contract Category: Logic Error

Description

The custody_id represents the index of a Custody in the Pool ’s custody vector. In
the remove_custody instruction, the corresponding custody is removed from the Pool

’s custody vector as shown below:

114 // remove token from the list

115 let pool = ctx.accounts.pool.as_mut();

116 let custody_id = pool.get_custody_id(&ctx.accounts.custody.key())?;

117 pool.custodies.remove(custody_id);

programs/perpetuals/src/instructions/remove_custody.rs#L114-L117

However, this removal causes an unintended issue: any custody_id values greater than
the removed one are shifted (decremented by 1) due to the re-indexing of the vector. This
re-indexing introduces amisalignment of custody_id across other contract components
that rely on it, such as the Market and Order accounts.

• Market Account: The custody_id stored in the Market account is used to fetch backup
oracle price data. Misalignment of custody_id here results in fetching incorrect price
data, which could lead to denial-of-service (DoS) issues or inaccurate price references.

• Order Account: The custody_id is used for validation across the Order , Market , and
Pool ’s custody vector. Misalignment causes these validations to fail, resulting in stuck
orders. This issue can even prevent users from canceling orders and withdrawing their
reserve tokens.

Impact

• Incorrect PriceData: Misalignment of custody_id in the Market account leads to fetch-
ing incorrect backup oracle prices, which can cause DoS situations or inaccurate price.

• Stuck Orders: Misaligned custody_id in Order accounts causes orders to become
stuck. Users may be unable to cancel orders and withdraw reserve tokens.

Recommendation

To prevent this issue, avoid using the index of a custody vector (custody_id) as a dynamic
reference. Instead, implement a static, unique identifier for each custody that persists re-
gardless of its position in the vector.

OFFSIDE LABS 6

https://github.com/flash-trade/flash-contracts-closed/commit/8dd9f3732d4f06e20e97f335841e88fbb53f37ba
https://github.com/flash-trade/flash-contracts-closed/blob/017e978b48e7ff0d8b28a5c62ee1ee3d96a924ea/programs/perpetuals/src/instructions/remove_custody.rs#L114-L117

Mitigation Review Log

Introduced a unique_custody_count (u8) field in Pool account and uid (u8) field in
Custody account that persists as a static unique identifier for a given Pool. This system
also allows a Custody to be added back again after being removed but with a new uid.

_custody_id related fields in Order account are renamed to _custody_uid to reference
the static uid field of the corresponding custody account.

Fixed in commit d0c1ae4750ef6568c0008e0efe8d33b4e087b771.

4.3 Incorrect Receive Custody IDVerification for Trigger Order

Severity: High Status: Fixed

Target: Smart Contract Category: Logic Error

Description

The receive_custody_id is used to indicate the receiving asset after a trigger order is
filled.

In the place_trigger_order instruction, it is verified with the following logic:

154 if params.receive_custody_id > pool.custodies.len() as u8 {

155 return Err(ProgramError::InvalidArgument.into());

156 }

programs/perpetuals/src/instructions/place_trigger_order.rs#L154-L156

However, the expected range for receive_custody_id should be [0, pool.custodies.

len() - 1] . The current check allows an invalid receive_custody_id equal to
pool.custodies.len() , which is out of bounds.

Additionally, in the execute_trigger_order instruction, the receive_custody_id is
never validated. This omission allowsauser to potentially receive anunexpectedasset after
the trigger order is filled, leading to unintended asset exposure.

Impact

• Stuck Trigger Orders: Users may create trigger orders that cannot be executed due to the
incorrect receive_custody_id verification in the place_trigger_order instruction.

• Unexpected Asset Exposure: Users may receive unintended assets after the trigger order
is executed due to the lack of validation in the execute_trigger_order instruction. This
could result in exposure to undesired assets and financial losses.

OFFSIDE LABS 7

https://github.com/flash-trade/flash-contracts-closed/commit/d0c1ae4750ef6568c0008e0efe8d33b4e087b771
https://github.com/flash-trade/flash-contracts-closed/blob/017e978b48e7ff0d8b28a5c62ee1ee3d96a924ea/programs/perpetuals/src/instructions/place_trigger_order.rs#L154-L156

Recommendation

Fix the range check in place_trigger_order instruction and add verification in
execute_trigger_order instruction.

Mitigation Review Log

Eliminated range check and added account and seed validation for receive_custody in the
place_trigger_order instruction. Also added verification for receive_custody uid in
execute_trigger_order instruction.

Fixed in commit d0c1ae4750ef6568c0008e0efe8d33b4e087b771.

4.4 Lack of Price Slippage Protection in ExecuteLimitOrder Instruction

Severity: Medium Status: Fixed

Target: Smart Contract Category: Logic Error

Description

In the execute_limit_order instruction, the limit_price is initially verified, and the
entry_price is calculated as follows:

262 let entry_price = if market.side == Side::Long {

263 require!(

264 target_min_price <= limit_price,

265 PerpetualsError::InvalidLimitPrice

266);

267 target_max_price

268 } else {

269 require!(

270 target_max_price >= limit_price,

271 PerpetualsError::InvalidLimitPrice

272);

273 target_min_price

274 };

programs/perpetuals/src/instructions/execute_limit_order.rs#L262-L274

While the code checks if the limit_price is within the acceptable range (target_min_
price and target_max_price), the final entry_price is derived based on the price
range and the trade spread. This calculationmay result in an entry_price that deviates
from the user-defined limit_price , leading to unintended execution prices.

OFFSIDE LABS 8

https://github.com/flash-trade/flash-contracts-closed/commit/d0c1ae4750ef6568c0008e0efe8d33b4e087b771
https://github.com/flash-trade/flash-contracts-closed/blob/017e978b48e7ff0d8b28a5c62ee1ee3d96a924ea/programs/perpetuals/src/instructions/execute_limit_order.rs#L262-L274

Impact

Users may receive an unintended entry_price when executing a limit order, resulting in
unexpected costs or losses due to slippage.

Recommendation

To protect users from unintended price slippage, implement an additional field in the
Order structure to allow users to specify their maximum acceptable slippage.

Mitigation Review Log

Updated the flow to use limit price as the ultimate execution price instead of am-
biguous target_min_price or target_max_price, and retained the associ-
ated size based spread which is static across both execute_limit_order and
execute_limit_order_with_swap instructions.

Fixed in commit f3a86ce01b8b7fae83ab515133924d896562f4b5.

4.5 Multiple Permissions Never Checked in Corresponding Instructions

Severity: Medium Status: Fixed

Target: Smart Contract Category: Logic Error

Description

The Permissions struct in the Perpetuals state is designed to determine whether
specific actions are allowed within the smart contract. It contains multiple boolean
flags to enforce these restrictions. However, certain permissions— allow_liquidation

, allow_lp_staking , allow_fee_discounts , and allow_referral_rebates —are
never validated in their respective instructions.

Impact

This oversight allows these actions to be executed regardless of whether the corresponding
permission has been set to false .

Recommendation

Add checks for these permissions in corresponding instructions.

Mitigation Review Log

Updated the requiredpermission checks in corresponding instructions. Also refactoredand
moved the validation to Pool::fetch_and_update_trading_benefits function specifi-

OFFSIDE LABS 9

https://github.com/flash-trade/flash-contracts-closed/commit/f3a86ce01b8b7fae83ab515133924d896562f4b5

cally for Privilege::Referral flow.

Fixed in commit 1871026dfd55c68e215f1e51a168e589c8729f7e.

4.6 Unreasonable Fee Discount andRebateWhen Insolvent Position Close

Severity: Medium Status: Fixed

Target: Smart Contract Category: Logic Error

Description

In the get_close_amount function, when a position is detected as insolvent, the exit fee
calculation discounts the fee obligations:

518 } else {

519 // Position is insolvent so discount fee obligations

520 let final_fees_usd = assets_usd.saturating_sub(loss_usd);

521 Ok((

522 0u64,

523 collateral_min_price

524 .get_token_amount(final_fees_usd,

position.collateral_decimals)?,↪

525))

526 }

programs/perpetuals/src/state/pool.rs#L518-L526

However, if the discounted exit fee (final_fees_usd) is not zero, the instructions con-
tinues processing through the referral logic to calculate further discounts, rebates, and
refunds. This behavior creates a logical inconsistency, as insolvent positions should ideally
not qualify for additional fee rebates or discounts.

Impact

This issue can result in less fees being allocated to liquidity providers (LPs) because the
insolvent position unnecessarily benefits from referral logic discounts and rebates.

Recommendation

Refactor the get_close_amount function to introduce a boolean flag that explicitly indi-
cates whether the position is insolvent. This flag can then be used to bypass any further
logic (such as referral discounts and rebates) for insolvent positions.

OFFSIDE LABS 10

https://github.com/flash-trade/flash-contracts-closed/commit/1871026dfd55c68e215f1e51a168e589c8729f7e
https://github.com/flash-trade/flash-contracts-closed/blob/017e978b48e7ff0d8b28a5c62ee1ee3d96a924ea/programs/perpetuals/src/state/pool.rs#L518-L526

Mitigation Review Log

Updated the function signature of get_close_amount to also return a boolean flag
is_solvent to identify if the current position is solvent post fee obligations and to bypass
privileges associated to fee discounts and/or rebates in case of insolvency.

Fixed in commit fe974713f385c497b7f09269ff22e31837ce3324.

4.7 Borrow Rate Updating of Collateral Custody May be Skipped in
CloseAndSwap Instruction

Severity: Medium Status: Fixed

Target: Smart Contract Category: Logic Error

Description

In the close_and_swap instruction, the logic checks whether the available token amount
in the dispensing custody is sufficient before executing the corresponding actions. The rel-
evant code snippet is as follows:

531 if math::checked_sub(

532 dispensing_custody.assets.owned,

533 dispensing_custody.assets.locked,

534)? >= dispensing_amount

535 {

536 // transfer token

537 msg!("Transfer token");

programs/perpetuals/src/instructions/close_and_swap.rs#L531-L537

However, in the second branch of this conditional, the update_borrow_rate function for
collateral custody is not called, which may lead to unintended consequences.

Impact

Failure to update the borrow rate for collateral custody will result in a higher borrow rate
and increased lock fees until the next update occurs. This could adversely affect users rely-
ing on the accurate calculation of borrowing costs.

Recommendation

Ensure that the update_borrow_rate function for collateral custody is invoked in the
second branch of the conditional statement.

OFFSIDE LABS 11

https://github.com/flash-trade/flash-contracts-closed/commit/fe974713f385c497b7f09269ff22e31837ce3324
https://github.com/flash-trade/flash-contracts-closed/blob/017e978b48e7ff0d8b28a5c62ee1ee3d96a924ea/programs/perpetuals/src/instructions/close_and_swap.rs#L531-L537

Mitigation Review Log

Updated the execution branch identified above to also include update_borrow_rate func-
tion invocation.

Fixed in commit 5b90876279b3c69ff71175e0edbed66f77c4e68d.

4.8 Referee Can Steal Rebate Due to Unverified Remaining Account

Severity: Medium Status: Fixed

Target: Smart Contract Category: Data Validation

Description

The smart contract utilizes three accounts in remaining accounts to calculate and exe-
cute referral discounts and rebates: the referee’s referral account, the referrer’s trading
account, and the referrer’s rebate receiving account.

The code responsible for transferring rebates is as follows:

403 if rebate > 0 {

404 net_fee_amount = net_fee_amount.saturating_sub(rebate);

405 perpetuals.transfer_tokens(

406 ctx.accounts

407 .collateral_custody_token_account

408 .to_account_info(),

409 ctx.remaining_accounts[2].to_account_info(),

410 ctx.accounts.transfer_authority.to_account_info(),

411 ctx.accounts.token_program.to_account_info(),

412 rebate,

413)?;

414 }

programs/perpetuals/src/instructions/close_and_swap.rs#L403-L414

Currently, the rebate receiving account (located at ctx.remaining_accounts[2]) is not
verified. This lack of verification allows the referee to manipulate the account used for the
rebate transfer.

Impact

The referee could potentially use a different account instead of the token account specifi-
cally owned by the referrer, leading to unauthorized rebate theft.

OFFSIDE LABS 12

https://github.com/flash-trade/flash-contracts-closed/commit/5b90876279b3c69ff71175e0edbed66f77c4e68d
https://github.com/flash-trade/flash-contracts-closed/blob/017e978b48e7ff0d8b28a5c62ee1ee3d96a924ea/programs/perpetuals/src/instructions/close_and_swap.rs#L403-L414

Recommendation

Ensure that the rebate receiving account is the associated token account of referrer.

Mitigation Review Log

Added the required validation checks to ensure rebate is always credited to the rightful
owner.

Fixed in commit be40238c76f24eea37167f37d6e33ae58344e4d9.

4.9 Remove Instructions Cannot be Executed When Multisig Threshold
Exceeds One

Severity: Medium Status: Fixed

Target: Smart Contract Category: Logic Error

Description

In the remove_pool , remove_market , and remove_custody instructions, the target
account is closed, and the size of the parent account is reallocated. Below is an example of
the remove_custody instruction:

42 #[account(

43 mut,

44 realloc = Pool::LEN + (pool.custodies.len() + pool.markets.len() - 1) *

std::mem::size_of::<Pubkey>() +↪

45 (pool.ratios.len() - 1) * std::mem::size_of::<TokenRatios>(),

46 realloc::payer = admin,

47 realloc::zero = false,

48 seeds = [b"pool",

49 pool.name.as_bytes()],

50 bump = pool.bump

51)]

52 pub pool: Box<Account<'info, Pool>>,

programs/perpetuals/src/instructions/remove_custody.rs#L42-L52

The implementation attempts to remove the related data from the state of the parent ac-
count after the threshold ismet. However, this logic only functions correctly if themulti-sig
threshold is one. If the threshold is greater than one, the size of the upper account is real-
located, but the actual state modification is not executed during the first signer call. This
results in an instruction failure.

OFFSIDE LABS 13

https://github.com/flash-trade/flash-contracts-closed/commit/be40238c76f24eea37167f37d6e33ae58344e4d9
https://github.com/flash-trade/flash-contracts-closed/blob/017e978b48e7ff0d8b28a5c62ee1ee3d96a924ea/programs/perpetuals/src/instructions/remove_custody.rs#L42-L52

Impact

If the multi-sig threshold is greater than one, the remove_* instructions cannot be exe-
cuted successfully due to instruction failure.

Recommendation

Ensure that the account closure and reallocation of the parent account size occur only after
the multi-sig threshold is met.

Mitigation Review Log

Updated the required instructions accordingly to have account closures and reallocation
only after the multi-sig threshold is met. Reallocation of parent account is redundant.

Fixed in commit c21e87544f6e460f5666b3a24f8d8404c922d307.

4.10 Reimburse Instruction Cannot be Executed NormallyWhenMultisig
Threshold Exceeds One

Severity: Medium Status: Fixed

Target: Smart Contract Category: Logic Error

Description

In the multi-sig implementation, it hashes the accounts except admin signer and in-
struction data to ensure uniqueness. However, in the reimburse instruction, the
funding_account is constrained by the admin signer. The relevant code snippet is as
follows:

34 #[account(

35 mut,

36 constraint = funding_account.mint == custody.mint

37 && funding_account.owner == admin.key(),

38)]

39 pub funding_account: Box<Account<'info, TokenAccount>>,

programs/perpetuals/src/instructions/reimburse.rs#L34-L39

If themulti-sig threshold exceeds one, the funding_account must remain the same, but its
authority would differ due to the constraint. This introduces an abnormal execution flow:
the only way to execute the instruction successfully is for the admin signer to repeatedly
transfer the authority of the token account to the next signer in the multi-sig process. This
behavior is both impractical and inconsistent with expected multi-sig functionality.

OFFSIDE LABS 14

https://github.com/flash-trade/flash-contracts-closed/commit/c21e87544f6e460f5666b3a24f8d8404c922d307
https://github.com/flash-trade/flash-contracts-closed/blob/017e978b48e7ff0d8b28a5c62ee1ee3d96a924ea/programs/perpetuals/src/instructions/reimburse.rs#L34-L39

Impact

The funding_account constraint in the reimburse instruction is incompatible with the
current multi-sig implementation when the threshold exceeds one. This results in abnor-
mal execution flow, making the reimburse instruction effectively unusable under these
conditions.

Recommendation

Consider using a program-owned token account instead of a user-owned account for the
funding_account .

Mitigation Review Log

Updated the validation to check for admin control instead of multisig threshold to avoid
use of additional program-owned token accounts.

Fixed in commit 88976c103019a8dd2e7d1a72c98dbf9d753d3836.

4.11 SingleSingerCanBypassThresholdofMultisig inAddInternalOracle
Instruction

Severity: Low Status: Fixed

Target: Smart Contract Category: Logic Error

Description

In the add_internal_oracle instruction, the int_oracle_account is created during
the first signer call using the init_if_needed constraint. However, there is no subse-
quent initialization or verification of this account after the threshold is met. This means
the creation of the account effectively completes the multi-sig execution for this instruc-
tion, allowing a single signer to bypass the multi-sig threshold entirely.

27 #[account(

28 init_if_needed,

29 payer = admin,

30 space = CustomOracle::LEN,

31 seeds = [b"oracle_account",

32 custody_token_mint.key().as_ref()],

33 bump

34)]

35 pub int_oracle_account: Box<Account<'info, CustomOracle>>,

programs/perpetuals/src/instructions/add_internal_oracle.rs#L27-L35

OFFSIDE LABS 15

https://github.com/flash-trade/flash-contracts-closed/commit/88976c103019a8dd2e7d1a72c98dbf9d753d3836
https://github.com/flash-trade/flash-contracts-closed/blob/017e978b48e7ff0d8b28a5c62ee1ee3d96a924ea/programs/perpetuals/src/instructions/add_internal_oracle.rs#L27-L35

Impact

A single signer can exploit the init_if_needed constraint to bypass themulti-sig thresh-
old, enabling unauthorized execution of the add_internal_oracle instruction.

Recommendation

Ensure that the int_oracle_account is created only after the multi-sig threshold is vali-
dated or add a state flag to the account to indicate whether it has been properly initialized.

Mitigation Review Log

Moved to admin control with implicit initialization.

Fixed in commit 049e17ff0d0bf2862deaf02eb66d0c1bb4bb4387.

4.12 Position Profit May Benefit from Precision Loss in Entry Price
Calculation

Severity: Low Status: Fixed

Target: Smart Contract Category: Precision

Description

The increase_size instruction in the contract calculates the new entry_price as fol-
lows:

386 // Average_Entry_Price = updated_size_usd / updated_size

387 position.entry_price.price = math::checked_as_u64(math::checked_div(

388 size_usd_scaled,

389 updated_size_amount as u128,

390)?)?;

programs/perpetuals/src/instructions/increase_size.rs#L386-L390

However, the use of floor division (checked_div) results in precision loss. This behavior
allows users to manipulate their position profit under certain conditions.

For example, when a user opens a long position, they can increase a small amount of size
at the new price (when themarket price rises). Due to the precision loss, the entry_price

may remain unchanged, which could artificially increase the profit for the newly added size.
This issue is limited in scope, as the profit gain is constrained by the precision granularity
of the price.

OFFSIDE LABS 16

https://github.com/flash-trade/flash-contracts-closed/commit/049e17ff0d0bf2862deaf02eb66d0c1bb4bb4387
https://github.com/flash-trade/flash-contracts-closed/blob/017e978b48e7ff0d8b28a5c62ee1ee3d96a924ea/programs/perpetuals/src/instructions/increase_size.rs#L386-L390

Impact

Auser can exploit the precision loss by increasing a small amount of size for a long position
before closing it, thereby increasing their profit. However, the impact is minimal due to the
limited effect of price precision on the calculation. Under the current configuration and
liquidity, no significant attack or exploit appears feasible.

Recommendation

Use ceiling division instead of floor division for the entry price calculation of long position
increasing.

Mitigation Review Log

Added conditional flow to increase precision for entry price calculations on position incre-
ment.

Fixed in commit 5967dc8599b9690d58d5330dc328909a93743ab5.

OFFSIDE LABS 17

https://github.com/flash-trade/flash-contracts-closed/commit/5967dc8599b9690d58d5330dc328909a93743ab5

5 Disclaimer

This report reflects the security status of the project as of the date of the audit. It is intended
solely for informational purposes and should not be used as investment advice. Despite carry-
ing out a comprehensive review and analysis of the relevant smart contracts, it is important
to note that Offside Labs’ services do not encompass an exhaustive security assessment. The
primary objective of the audit is to identify potential security vulnerabilities to the best of the
team’s ability; however, this audit does not guarantee that the project is entirely immune to
future risks.

Offside Labs disclaims any liability for losses or damages resulting from the use of this report
or from any future security breaches. The team strongly recommends that clients undertake
multiple independent audits and implement a public bug bounty program to enhance the se-
curity of their smart contracts.

The audit is limited to the specific areas defined inOffside Labs’ engagement and does not cover
all potential risks or vulnerabilities. Security is an ongoing process, regular audits and moni-
toring are advised.

Please note: Offside Labs is not responsible for security issues stemming fromdeveloper errors
ormisconfigurations during contract deployment and does not assume liability for centralized
governance riskswithin theproject. The team isnotaccountable forany impact on theproject’s
security or availability due to significant damage to the underlying blockchain infrastructure.

By utilizing this report, the client acknowledges the inherent limitations of the audit process
and agrees that the firm shall not be held liable for any incidents that may occur after the
completion of this audit.

This report should be considered null and void in case of any alteration.

OFFSIDE LABS 18

OFFSIDE LABS

https://offside.io/

https://github.com/offsidelabs

https://twitter.com/offside_labs

https://offside.io/
https://github.com/offsidelabs
https://twitter.com/offside_labs

	About Offside Labs
	Executive Summary
	Summary of Findings
	Key Findings and Recommendations
	Unsettled Lock Fees Overwritten in ExecuteLimitOrder Instruction
	Remove Custody Will Cause Custody ID Misalignment
	Incorrect Receive Custody ID Verification for Trigger Order
	Lack of Price Slippage Protection in ExecuteLimitOrder Instruction
	Multiple Permissions Never Checked in Corresponding Instructions
	Unreasonable Fee Discount and Rebate When Insolvent Position Close
	Borrow Rate Updating of Collateral Custody May be Skipped in Instruction
	Referee Can Steal Rebate Due to Unverified Remaining Account
	Remove Instructions Cannot be Executed When Multisig Threshold One
	Reimburse Instruction Cannot be Executed Normally When Multisig Threshold Exceeds One
	Single Singer Can Bypass Threshold of Multisig in AddInternalOracle Instruction
	Position Profit May Benefit from Precision Loss in Entry Price

	Disclaimer

