
// Private Solana Program Security Assessment 02.06.2024 - 03.20.2024

Perpetuals
Flash Trade

Pe r p e t u a l s - F l a s h T ra d e

Prepared by: HALBORN

Last Updated 05/13/2024

Date of Engagement by: February 6th, 2024 - March 20th, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

9

CRITICAL

1

HIGH

1

MEDIUM

0

LOW

4

INFORMATIONAL

3

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Protocol fees inconsistnecy in withdrawfees
7.2 Failure to remove markets despite empty position values
7.3 Multiple risks associated with invalid oracle configuration
7.4 Check missing during reward vault initialization
7.5 Risk of loss of users benefits and rewards due to perpetuals and pool misconfiguration
7.6 Risk of lost unclaimed rewards due to if flp stake misconfiguration
7.7 Missing validation for oracle authority address
7.8 Redundant permissions
7.9 Lack of error handling if different collateral custody in perp composability

8. Automated Testing

1 0 0%

1 . I n t r o d u c t i o n

Flash Trade is a decentralized spot and perpetuals exchange on Solana that lets to trade on up to 100x
leverage, with low fees and minimal price impact. The trading engine of Flash is powered by a unique
multi-asset pool-to-peer oracle-based program, the first of its kind on Solana. Additionally, it uses an
evolutionary NFT architecture to abstract accounts, unlocking a new level of gamification to incentivize
high-volume trading on the protocol.

Halborn conducted a security assessment on their Solana programs, beginning on February 6th, 2024
and ending on March 20th, 2024. The security assessment was scoped to the programs provided in the
[flash-contracts-closed](https://github.com/flash-trade/flash-contracts-closed/tree/main) GitHub
repository. Commit hashes and further details can be found in the Scope section of this report.

2. A s s e s s m e n t S u m m a r y

The team at Halborn was provided 6.5 weeks for the engagement and assigned 1 full-time security
engineer to review the security of the programs in scope. The security engineer is a blockchain and
Solana Program security expert with advanced penetration testing and Solana Program hacking skills,
and deep knowledge of multiple blockchain protocols.

The purpose of this assessment is to identify potential security issues within the programs.

In summary, Halborn identified some improvements to reduce the likelihood and impact of multiple risks,
which has been partially addressed by the Flash Trade team. The main ones were the following:

Protocol Fees inconsistency in WithdrawFees
Failure to remove Markets despite empty position values
Risk of lost unclaimed rewards due to if Flp Stake misconfiguration
Check missing during reward vault initialization

https://github.com/flash-trade/flash-contracts-closed/tree/main
https://github.com/flash-trade/flash-contracts-closed/tree/main

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of a manual review of the source code and automated security testing
to balance e�ciency, timeliness, practicality, and accuracy in regard to the scope of the program
assessment. While manual testing is recommended to uncover flaws in business logic, processes, and
implementation; automated testing techniques help enhance coverage of programs and can quickly
identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

- Research into the architecture, purpose, and use of the platform.

- Manual program source code review to identify business logic issues.

- Mapping out possible attack vectors

- Thorough assessment of safety and usage of critical Rust variables and functions in scope that could
lead to arithmetic vulnerabilities.

- Scanning dependencies for known vulnerabilities (c̀argo audit)̀.

- Local runtime testing (s̀olana-test-framework)̀

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coe�cient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coe�cients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO)
Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

m e

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

m e

E

E = m ∏ e

m I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

m I

I

I = max(m) +I

4
m − max(m)∑ I I

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coe�cient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

r

s

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: flash-contracts-closed

(b) Assessed Commit ID: 7dcf940

(c) Items in scope:

1. perpetuals (p̀rograms/perpetuals/*)̀
2. fbnft-rewards (p̀rograms/fbnft-rewards/*)̀
3. perp-composability (p̀rograms/perp-composability/*)̀

Out-of-Scope: - third-party libraries and dependencies, - financial-related attacks

REMEDIAT ION COMMIT ID :

06a5eb406a5eb4
1e44c351e44c35
60b325860b3258

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

1

HIGH

1

MEDIUM

0

LOW

4

INFORMATIONAL

3

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL-06 - PROTOCOL FEES INCONSISTNECY IN
WITHDRAWFEES

Critical SOLVED - 03/08/2024

HAL-10 - FAILURE TO REMOVE MARKETS DESPITE EMPTY
POSITION VALUES

High SOLVED - 03/08/2024

https://github.com/flash-trade/flash-contracts-closed/tree/main
https://github.com/flash-trade/flash-contracts-closed/commit/7dcf940dd3caf2a6e1dbeb9dac1617f104008411
https://github.com/flash-trade/flash-contracts-closed/pull/42/commits/06a5eb4ba74bbc617ddc3cc8423a639c57f6b04a
https://github.com/flash-trade/flash-contracts-closed/pull/42/commits/06a5eb4ba74bbc617ddc3cc8423a639c57f6b04a
https://github.com/flash-trade/flash-contracts-closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b
https://github.com/flash-trade/flash-contracts-closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b
https://github.com/Halborn/Flash-trade--flash-contracts-closed/commit/60b32588eaa37bb529d25f5a1ed76ab4e68cdc47
https://github.com/Halborn/Flash-trade--flash-contracts-closed/commit/60b32588eaa37bb529d25f5a1ed76ab4e68cdc47

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL-05 - MULTIPLE RISKS ASSOCIATED WITH INVALID
ORACLE CONFIGURATION

Low
PARTIALLY SOLVED -

04/22/2024

HAL-03 - CHECK MISSING DURING REWARD VAULT
INITIALIZATION

Low SOLVED - 04/22/2024

HAL-07 - RISK OF LOSS OF USERS BENEFITS AND
REWARDS DUE TO PERPETUALS AND POOL

MISCONFIGURATION
Low

PARTIALLY SOLVED -
04/22/2024

HAL-04 - RISK OF LOST UNCLAIMED REWARDS DUE TO IF
FLP STAKE MISCONFIGURATION

Low SOLVED - 04/28/2024

HAL-09 - MISSING VALIDATION FOR ORACLE AUTHORITY
ADDRESS

Informational ACKNOWLEDGED

HAL-02 - REDUNDANT PERMISSIONS Informational ACKNOWLEDGED

HAL-08 - LACK OF ERROR HANDLING IF DIFFERENT
COLLATERAL CUSTODY IN PERP COMPOSABILITY

Informational ACKNOWLEDGED

7. F I N D I N G S & T EC H D E TA I L S

7.1 (H A L - 0 6) P ROTO C O L F E ES I N C O N S I ST N ECY I N

WI T H D R AWF E ES

// CRITICAL

Description
The WithdrawFees instruction empowers administrators to transfer custody protocol fees, which are
dynamically updated with each call to CollectStakeReward, to a designated receiving account.
programs/perpetuals/src/instructions/collect_stake_reward.rs

 let user_reward = math::checked_as_u64(math::checked_div(
 math::checked_mul(flp_stake.unclaimed_rewards as u128,
 flp_stake.fee_share_bps as u128
)?,
 Perpetuals::BPS_POWER
)?)?;

 // transfer tokens to user
 msg!("Transfer flp tokens");
 perpetuals.transfer_tokens(
 ctx.accounts.fee_custody_token_account.to_account_info(),
 ctx.accounts.receiving_token_account.to_account_info(),
 ctx.accounts.transfer_authority.to_account_info(),
 ctx.accounts.token_program.to_account_info(),
 user_reward,
)?;

 fee_custody.fees_stats.paid = math::checked_add(fee_custody.fees_stats.paid,
user_reward as u128)?;
 fee_custody.fees_stats.protocol_fee = math::checked_add(
 fee_custody.fees_stats.protocol_fee,
 math::checked_sub(flp_stake.unclaimed_rewards, user_reward)?
)?;

Consequently, the custody fees paid (**custody.fees_stats.paid**) are adjusted based on the withdrawn
amount.
However, a critical oversight This perpetuates a scenario where protocol fees consistently accumulate
with each execution of CollectStakeRewards, resulting in subsequent calls to WithdrawFees
transferring larger amounts than warranted. This situation jeopardizes custody funds, risking partial
depletion with each instruction call and leaving the system in an inconsistent state.persists: the protocol
fees themselves remain static.
programs/perpetuals/src/instructions/withdraw_fees.rs

 let custody = ctx.accounts.custody.as_mut();
 let fee_amount = custody.fees_stats.protocol_fee;
 msg!("Withdraw token fees: {}", fee_amount);

 ctx.accounts.perpetuals.transfer_tokens(
 ctx.accounts.custody_token_account.to_account_info(),
 ctx.accounts.receiving_token_account.to_account_info(),
 ctx.accounts.transfer_authority.to_account_info(),
 ctx.accounts.token_program.to_account_info(),
 fee_amount,
)?;

 custody.fees_stats.paid = math::checked_add(custody.fees_stats.paid, fee_amount
as u128)?;

 Ok(0)

This discrepancy not only compromises the accuracy of protocol fee withdrawal transactions but also
affects other transaction calculations. As protocol fees inflate without adjustment, the corresponding
paid fees are updated accordingly. This leads to potential overflow in the calculation of the initial custody
amount in other instructions, as the fees paid may exceed those accrued on the custody from which the
protocol fees are derived.

 let initial_custody_amount = math::checked_add(
 math::checked_add(collateral_custody.assets.owned,
collateral_custody.assets.collateral)? as u128,
 math::checked_sub(collateral_custody.fees_stats.accrued,
collateral_custody.fees_stats.paid)?
)?;

Proof of Concept
1. Init Perpetual
2. Add a collection
3. Add a pool
4. Set permissions
5. Set Pool Config (setting
6. Add diferent Custodies (USDC, SOL, ETH, BTC)
7. Set Custodies (USDC, SOL, ETH, BTC)
8. Bob creates trading Account
9. Bob creates Referral Account
10. Bob updates its Trading Account
11. Alice creates Referral Account
12. Add Market SOL -> SOL (LONG)
13. Add Market SOL -> USDC (SHORT)
14. Init Staking setting Custody USDC as pool.reward_custody

15. Refresh 1
16. Bob adds Liquidity to different Custodies
17. Bob Deposits Stake
18. Set the different Custom Oracles Price and Refresh Stake day 2
19. Alice and Bob Open Positions Market SOL -> USDC (SHORT)
20. Refresh day 3
21. Bob Unstake instant
22. Bob Collect Stake Rewards (so the protocol fees are updated)
23. Admin Withdraw Fees once
24. Admin Withdraw Fees twice
25. Atemp to swap

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:H/D:H/Y:M/R:N/S:U (10.0)

Recommendation
To address the observed inconsistency, it's pivotal to implement a mechanism within the withdraw_fees
handler instruction to dynamically update the protocol fees with each call. Specifically, resetting the
protocol fees to zero once they've been withdrawn ensures accuracy and consistency.

R e m e d i a t i o n P l a n

SOLVED: To rectify the identified inconsistency, the Flash Trade team has been made a modification to
the withdraw_fees handler instruction. Now, upon fee withdrawal, the custody's fee state protocol fee is
dynamically reset to zero. This adjustment ensures the ongoing accuracy and consistency of the
protocol's fee management.

Remediation Hash

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AH%2FY%3AM%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AH%2FY%3AM%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AH%2FY%3AM%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AH%2FY%3AM%2FR%3AN%2FS%3AU

https://github.com/flash-trade/flash-contracts-
closed/pull/42/commits/06a5eb4ba74bbc617ddc3cc8423a639c57f6b04a

https://github.com/flash-trade/flash-contracts-closed/pull/42/commits/06a5eb4ba74bbc617ddc3cc8423a639c57f6b04a
https://github.com/flash-trade/flash-contracts-closed/pull/42/commits/06a5eb4ba74bbc617ddc3cc8423a639c57f6b04a

7. 2 (H A L -1 0) FA I L U R E TO R E M OV E M A R K E TS D ES P I T E

E M P T Y P O S I T I O N VA L U ES

// HIGH

Description
The RemoveMarket instruction is restricted solely to administrator signatories equipped with multisig
capabilities. Its purpose is to eliminate a market when its collective position values become empty.
Despite this initial validation, the instruction handler fails to proceed with the necessary actions. As a
result, the market remains intact, leaving the pool's market vector unaltered. This oversight permits
trading activities to continue even after the market's supposed removal, thereby allowing actions like
OpenPosition to proceed. Moreover, this loophole could potentially generate commissions from a market
that should have been eradicated.
programs/perpetuals/src/instructions/remove_market.rs

pub fn remove_market<'info>(
 ctx: Context<'_, '_, '_, 'info, RemoveMarket<'info>>,
 params: &RemoveMarketParams,
) -> Result<u8> {

 // validate signatures
 let mut multisig = ctx.accounts.multisig.load_mut()?;

 let signatures_left = multisig.sign_multisig(
 &ctx.accounts.admin,
 &Multisig::get_account_infos(&ctx)[1..],
 &Multisig::get_instruction_data(AdminInstruction::RemoveMarket, params)?,
)?;
 if signatures_left > 0 {
 msg!(
 "Instruction has been signed but more signatures are required: {}",
 signatures_left
);
 return Ok(signatures_left);
 }

 let market = ctx.accounts.market.as_mut();
 require!(
 market.collective_position.collateral_amount == 0
 && market.collective_position.size_amount == 0
 && market.collective_position.locked_amount == 0
 && market.collective_position.open_positions == 0,
 PerpetualsError::InvalidMarketState
);

http://market.rs/

 Ok(0)

Proof of Concept
1. Init Perpetual
2. Add a collection
3. Add a pool
4. Add diferent Custodies (USDC, SOL)
5. Bob creates trading Account
6. Bob creates Referral Account
7. Bob updates its Trading Account
8. Alice creates Referral Account
9. Add Market SOL -> SOL (LONG)
10. Remove Market SOL -> SOL (LONG)
11. Set Custom Oracles Pirce
12. Bob adds Liquidity (SOL)
13. Alice and Bob Open Positions Market SOL -> SOL (LONG)
14.

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:M/Y:H/R:N/S:U (8.8)

Recommendation
To address the identified issue, it is imperative to augment the remove_market instruction handler with a
remediation process that not only facilitates the correct removal of the market account but also ensures
the accurate update of the pool's markets vector to reflect the removal appropriately.

R e m e d i a t i o n P l a n

SOLVED: The Flash Trade team has implemented changes to complete the removal process within the
remove_market instruction handler, comprising:
- Updating the pool's markets vector to precisely reflect the market's removal.
- Validation of the market account removal to guarantee its accuracy in the pool.

Remediation Hash
https://github.com/flash-trade/flash-contracts-
closed/pull/42/commits/06a5eb4ba74bbc617ddc3cc8423a639c57f6b04a

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AM%2FY%3AH%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AM%2FY%3AH%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AM%2FY%3AH%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AM%2FY%3AH%2FR%3AN%2FS%3AU
https://github.com/flash-trade/flash-contracts-closed/pull/42/commits/06a5eb4ba74bbc617ddc3cc8423a639c57f6b04a
https://github.com/flash-trade/flash-contracts-closed/pull/42/commits/06a5eb4ba74bbc617ddc3cc8423a639c57f6b04a

7. 3 (H A L - 0 5) M U LT I P L E R I S KS AS S O C I AT E D WI T H I N VA L I D

O R AC L E C O N F I G U R AT I O N

// LOW

Description
The AddCustody instruction allows admin to integrate new custodies, with several parameters required,
including the respective oracle values used by the custody. Notably, the oracle_account,
custom_oracle_account, and oracle_type parameters play pivotal roles in this process. The oracle_type
field encompasses three possible values: None, Pyth, and Custom.
Upon completion, the data utilized to add the custody undergoes validation.
programs/perpetuals/src/instructions/add_custody.rs

 // record custody data
 let custody = ctx.accounts.custody.as_mut();
 custody.pool = pool.key();
 custody.mint = ctx.accounts.custody_token_mint.key();
 custody.token_account = ctx.accounts.custody_token_account.key();
 custody.decimals = ctx.accounts.custody_token_mint.decimals;
 custody.is_stable = params.is_stable;
 custody.depeg_adjustment = params.depeg_adjustment;
 custody.is_virtual = params.is_virtual;
 custody.oracle = params.oracle;
 custody.pricing = params.pricing;
 custody.permissions = params.permissions;
 custody.fees = params.fees;
 custody.borrow_rate = params.borrow_rate;
 custody.borrow_rate_state.current_rate = params.borrow_rate.base_rate;
 custody.borrow_rate_state.last_update = ctx.accounts.perpetuals.get_time()?;
 custody.bump = *ctx.bumps.get("custody").ok_or(ProgramError::InvalidSeeds)?;
 custody.token_account_bump = *ctx
 .bumps
 .get("custody_token_account")
 .ok_or(ProgramError::InvalidSeeds)?;
 // msg!("custody token account : {:?}", custody.token_account);
 //msg!("custody mint : {:?}", custody.mint);

 if !custody.validate() {
 err!(PerpetualsError::InvalidCustodyConfig)

programs/perpetuals/src/state/custody.rs

impl Custody {impl Custody {
 pub const LEN: usize = 8 + std::mem::size_of::<Custody>();pub const LEN: usize = 8 + std::mem::size_of::<Custody>();

 pub fn validate(&self) -> bool {pub fn validate(&self) -> bool {
 (!self.is_virtual || !self.is_stable)(!self.is_virtual || !self.is_stable)
 && self.token_account != Pubkey::default()&& self.token_account != Pubkey::default()
 && self.mint != Pubkey::default()&& self.mint != Pubkey::default()
 && self.oracle.validate()&& self.oracle.validate()
 && self.pricing.validate()&& self.pricing.validate()
 && self.fees.validate()&& self.fees.validate()
 && self.borrow_rate.validate()&& self.borrow_rate.validate()

However, it's crucial to highlight that the only validation conducted for the oracle parameters is the
following:
programs/perpetuals/src/state/oracle.rs

impl OracleParams {impl OracleParams {
 pub fn validate(&self) -> bool {pub fn validate(&self) -> bool {
 msg!("validating oracles");msg!("validating oracles");
 self.oracle_type == OracleType::None || self.oracle_account !=self.oracle_type == OracleType::None || self.oracle_account !=
Pubkey::default()Pubkey::default()
 }}
}}

This oversight presents various potential scenarios:

If the Pyth value is provided, it's plausible to input an invalid oracle_account that does not genuinely
correspond to a Pyth oracle, as such accounts lack proper validation.

In the case of providing the value None, it's even feasible to designate an oracle_account as a zero
address.

This oversight permits the addition of custody whose oracle_type value and oracle_account, once
created, remains unchangeable via SetCustodyConfig. Such a situation may lead to an invalid custody,
necessitating its removal via RemoveCustody, which succeeds only when the custody token count is zero.
Should an invalid custodian be inadvertently added, malicious users could exploit this by transferring a
nominal amount to the custodian token count, impeding its removal and subsequently preventing removal
from the pool. Consequently, instructions such as AddLiquidity, Swap, and RemoveLiquidity, which
require all custodian oracles in the pool as remaining counts, would fail.
Conversely, in cases where the Custom value is designated for oracle_type, the update of each oracle
would mandate a call to the SetCustomOraclePrice instruction. However, these updates lack proper
validation, potentially yielding uncertain results compared to o�cial oracles.
programs/perpetuals/src/instructions/set_custom_oracle_price.rs

pub fn set_custom_oracle_price<'info>(
 ctx: Context<'_, '_, '_, 'info, SetCustomOraclePrice<'info>>,
 params: &SetCustomOraclePriceParams,
) -> Result<u8> {
 // validate signatures
 let mut multisig = ctx.accounts.multisig.load_mut()?;

 let signatures_left = multisig.sign_multisig(
 &ctx.accounts.admin,
 &Multisig::get_account_infos(&ctx)[1..],
 &Multisig::get_instruction_data(AdminInstruction::SetCustomOraclePrice,
params)?,
)?;
 if signatures_left > 0 {
 msg!(
 "Instruction has been signed but more signatures are required: {}",
 signatures_left
);
 return Ok(signatures_left);
 }

 // update oracle data
 ctx.accounts.oracle_account.set(
 params.price,
 params.expo,
 params.conf,
 params.ema,
 params.publish_time,
);
 Ok(0)

Furthermore, it's essential to note that the custom_oracle_account, despite its inclusion, lacks validation
in AddCustody or SetCustodyConfig instructions and serves no functional purpose.

BVSS

AO:S/AC:L/AX:L/C:N/I:N/A:H/D:H/Y:C/R:N/S:U (2.8)

Recommendation
To mitigate the risks associated with invalid oracle configurations, several proactive steps can be taken:

Refine OracleType Enumeration: Eliminate the None value from the OracleType enumeration to prevent
inadvertent assignment errors.

Restrict Custom Oracles to Testing Environments: Limit the usage of custom oracles exclusively to
testing scenarios.

Implement Rigorous Validation Checks: Enhance validation protocols within the AddCustody and
SetCustodyConfig instructions to ensure the accuracy of oracle parameters. Specifically, validate the
oracle_account to ensure its compatibility with the designated oracle type (Pyth or Custom for testing
environments).

Flexible Oracle Adjustment: Enable administrators to modify oracle_account via the
SetCustodyConfig instruction, facilitating swift correction of any oracle misconfigurations.

Streamline Unused Features: Consider removing the custom_oracle_account entirely if it no longer
serves a practical purpose.

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AH%2FY%3AC%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AH%2FY%3AC%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AH%2FY%3AC%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AH%2FY%3AC%2FR%3AN%2FS%3AU

R e m e d i a t i o n P l a n

PARTIALLY SOLVED: The Flash Trade team has been implemented some changes following the
recommendations to fix the issue:

A verification has been added to prevent the oracle_account from being invalid during the custody
validation when the custody is added or its configuration is set.

Additionally, the oracle_account has been included as an argument in the SetCustodyConfig
instruction, enabling its modification if required.

Furthermore, the option to assign None as the OracleType to the oracle has been eliminated.

Remediation Hash
https://github.com/flash-trade/flash-contracts-
closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b

https://github.com/flash-trade/flash-contracts-closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b
https://github.com/flash-trade/flash-contracts-closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b

7. 4 (H A L - 0 3) C H EC K M I S S I N G D U R I N G R E WA R D VAU LT

I N I T I A L I Z AT I O N

// LOW

Description
The InitRewardVault instruction, integral to the fbnft-reward helper program, streamlines the
initialization of the reward vault alongside the allocation of a corresponding token account, specifically
designed to store NFT rewards earmarked for distribution among NFT owners. In this process, the
specification of the nft_count parameter plays a pivotal role, signaling the quantity of NFTs eligible for
reward distribution. However, an oversight emerges as this parameter lacks validation, thereby permitting
it to be erroneously set to zero without an implemented functionality for modification in subsequent
stages. Since the rewards_per_nft value of reward vault relies on the nft_count' parameter for updates
during the DistributeReward call, any attempt to execute this instruction subsequently will fail.
Consequently, accessing rewards through the CollectReward call becomes unattainable.
programs/fbnft-rewards/src/lib.rs

pub fn init_reward_vault<'info>(
 ctx: Context<InitRewardVault>,
 params: InitRewardVaultParams,
) -> Result<()> {
 let reward_vault = ctx.accounts.reward_vault.as_mut();
 reward_vault.admin = *ctx.accounts.admin.key;
 reward_vault.collection = ctx.accounts.collection_mint.key();
 reward_vault.reward_mint = ctx.accounts.reward_mint.key();
 reward_vault.reward_token_account = ctx.accounts.reward_token_account.key();
 reward_vault.transfer_authority = ctx.accounts.transfer_authority.key();
 reward_vault.bump =
*ctx.bumps.get("reward_vault").ok_or(ProgramError::InvalidSeeds)?;
 reward_vault.token_account_bump =
*ctx.bumps.get("reward_token_account").ok_or(ProgramError::InvalidSeeds)?;
 reward_vault.transfer_authority_bump =
*ctx.bumps.get("transfer_authority").ok_or(ProgramError::InvalidSeeds)?;
 reward_vault.nft_count = params.nft_count;
 reward_vault.rewards_per_nft = 0;
 reward_vault.accrued_amount = 0;
 reward_vault.paid_amount = 0;

 Ok(())
 }

programs/fbnft-rewards/src/lib.rs

 pub fn distribute_rewards<'info>(
 ctx: Context<DistributeRewards>,

http://lib.rs/
http://lib.rs/

 params: DistributeRewardsParams,
) -> Result<()> {
 let reward_vault = ctx.accounts.reward_vault.as_mut();

 // transfer tokens from funding account to reward vault
 reward_vault.transfer_tokens_from(
 ctx.accounts.funding_account.to_account_info(),
 ctx.accounts.reward_token_account.to_account_info(),
 ctx.accounts.admin.to_account_info(),
 ctx.accounts.token_program.to_account_info(),
 params.reward_amount,
)?;

 reward_vault.accrued_amount =
reward_vault.accrued_amount.checked_add(params.reward_amount as u128).unwrap();
 reward_vault.rewards_per_nft =
reward_vault.accrued_amount.checked_div(reward_vault.nft_count as u128).unwrap() as
u64;

programs/fbnft-rewards/src/lib.rs

 pub fn collect_reward<'info>(
 ctx: Context<CollectReward>,
) -> Result<()> {
 let reward_vault = ctx.accounts.reward_vault.as_mut();
 let reward_record = ctx.accounts.reward_record.as_mut();

 let metadata = &Metadata::try_from(&ctx.accounts.metadata_account).unwrap();
 let collection = metadata.collection.as_ref().unwrap();
 require!(collection.verified, FbnftRewardsError::InvalidCollection);
 require_keys_eq!(collection.key, reward_vault.collection);

 let reward_amount =
reward_vault.rewards_per_nft.checked_sub(reward_record.reward_debt).unwrap();

 // transfer tokens from reward vault to receiving account
 reward_vault.transfer_tokens(
 ctx.accounts.reward_token_account.to_account_info(),
 ctx.accounts.receiving_account.to_account_info(),
 ctx.accounts.transfer_authority.to_account_info(),
 ctx.accounts.token_program.to_account_info(),
 reward_amount,
)?;

http://lib.rs/

 reward_vault.paid_amount = reward_vault.paid_amount.checked_add(reward_amount
as u128).unwrap();
 reward_record.reward_debt = reward_vault.rewards_per_nft;

BVSS

AO:S/AC:L/AX:L/C:N/I:N/A:M/D:M/Y:C/R:N/S:U (2.5)

Recommendation
To address this issue effectively, it is recommended to implement validation checks within the
InitRewardVault instruction to ensure that the nft_count parameter is not set to zero. This validation
should occur at the outset of the instruction to prevent any erroneous initialization attempts.

R e m e d i a t i o n P l a n

SOLVED: The Flash Trade team has been fixed the identified issue, implementing a validation to ensure
that the nft_count value assigned during reward vault initialization is non-zero.

Remediation Hash
https://github.com/flash-trade/flash-contracts-
closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AM%2FD%3AM%2FY%3AC%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AM%2FD%3AM%2FY%3AC%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AM%2FD%3AM%2FY%3AC%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AM%2FD%3AM%2FY%3AC%2FR%3AN%2FS%3AU
https://github.com/flash-trade/flash-contracts-closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b
https://github.com/flash-trade/flash-contracts-closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b

7. 5 (H A L - 07) R I S K O F LO S S O F U S E RS B E N E F I TS A N D

R E WA R D S D U E TO P E R P E T UA L S A N D P O O L

M I S C O N F I G U R AT I O N

// LOW

Description
The Init and AddPool instructions empower administrators to initialize perpetuals accounts and add
pools, necessitating various parameter values as follows:
programs/perpetuals/src/instructions/init.rs

pub struct InitParams {
 pub min_signatures: u8,
 pub permissions: Permissions,
}

programs/perpetuals/src/instructions/add_pool.rs

pub struct AddPoolParams {
 pub name: String,
 pub permissions: Permissions,
 pub max_aum_usd: u128,
 pub metadata_title: String,
 pub metadata_symbol: String,
 pub metadata_uri: String,
}

However, certain fields of these accounts, such as staking_fee_share_bps and vp_volume_factor in
the pool; and voltage_multiplier trading_discount, referral_rebate, referral_discountin
perpetuals, are initialized to zero.
programs/perpetuals/src/instructions/init.rs

pub fn init(ctx: Context<Init>, params: &InitParams) -> Result<()> {
 // initialize multisig, this will fail if account is already initialized
 let mut multisig = ctx.accounts.multisig.load_init()?;

 multisig.set_signers(ctx.remaining_accounts, params.min_signatures)?;

 // record multisig PDA bump
 multisig.bump = *ctx
 .bumps
 .get("multisig")
 .ok_or(ProgramError::InvalidSeeds)?;

http://perpetuals.rs/

 // record perpetuals
 let perpetuals: &mut Account<'_, Perpetuals> = ctx.accounts.perpetuals.as_mut();
 perpetuals.permissions = params.permissions;
 perpetuals.transfer_authority_bump = *ctx
 .bumps
 .get("transfer_authority")
 .ok_or(ProgramError::InvalidSeeds)?;
 perpetuals.perpetuals_bump = *ctx
 .bumps
 .get("perpetuals")
 .ok_or(ProgramError::InvalidSeeds)?;
 perpetuals.inception_time = perpetuals.get_time()?;

 if !perpetuals.validate() {
 return err!(PerpetualsError::InvalidPerpetualsConfig);
 }
 msg!("perpetuals: {:?}", perpetuals);
 Ok(())

programs/perpetuals/src/instructions/add_pool.rs

pub fn add_pool<'info>(
 ctx: Context<'_, '_, '_, 'info, AddPool<'info>>,
 params: &AddPoolParams,
) -> Result<u8> {
 // validate inputs
 if params.name.is_empty() || params.name.len() > 64 {
 return Err(ProgramError::InvalidArgument.into());
 }

 // validate signatures
 let mut multisig = ctx.accounts.multisig.load_mut()?;

 let signatures_left = multisig.sign_multisig(
 &ctx.accounts.admin,
 &Multisig::get_account_infos(&ctx)[1..],
 &Multisig::get_instruction_data(AdminInstruction::AddPool, params)?,
)?;
 if signatures_left > 0 {
 msg!(
 "Instruction has been signed but more signatures are required: {}",
 signatures_left
);
 return Ok(signatures_left);
 }

 // record pool data
 let perpetuals = ctx.accounts.perpetuals.as_mut();
 let pool = ctx.accounts.pool.as_mut();

 if perpetuals.get_pool_id(&pool.key()).is_ok() {
 // return error if custody is already initialized
 return Err(ProgramError::AccountAlreadyInitialized.into());
 }

 if pool.inception_time != 0 {
 // return error if pool is already initialized
 return Err(ProgramError::AccountAlreadyInitialized.into());
 }

 msg!("Record pool: {}", params.name);
 pool.name = params.name.clone();
 pool.permissions = params.permissions;
 pool.inception_time = perpetuals.get_time()?;
 pool.flp_mint = ctx.accounts.lp_token_mint.key();
 pool.oracle_authority = ctx.accounts.oracle_authority.key();
 pool.max_aum_usd = params.max_aum_usd;
 pool.bump = *ctx.bumps.get("pool").ok_or(ProgramError::InvalidSeeds)?;
 pool.flp_mint_bump = *ctx
 .bumps
 .get("lp_token_mint")
 .ok_or(ProgramError::InvalidSeeds)?;

Until administrators invoke SetPoolConfig and SetPerpetualsConfig instructions to modify these values,
several consequences may arise:

Trading account benefits will be nonexistent, impeding level-up opportunities since these values form
the basis for such calculations.

Users initiating a 'DepositStake' call for the first time will have their 'fee_share_bps' initialized to zero
in their flp_stake_account, leading to the loss of unclaimed rewards upon collection from the stake since
all of them will be directed to protocol_fees. To mitigate this issue, administrators must precede these
calls with SetFlpSTakeConfig, assigning appropriate values to each initialized flp account. Additionally, as
mentioned in other finding in this report this instruction lacks validation to prevent the assignment of any
value other than the corresponding one.

Furthermore, SetPoolConfig and SetPerpetualsConfig instructions lack validation to prevent zero
assignment to the mentioned values. Therefore, despite being called, they may still lead to the same
scenario as during initialization.

programs/perpetuals/src/instructions/set_perpetuals_config.rs

pub fn set_perpetuals_config<'info>(
 ctx: Context<'_, '_, '_, 'info, SetPerpetualsConfig<'info>>,
 params: &SetPerpetualsConfigParams,
) -> Result<u8> {
 // validate signatures
 let mut multisig = ctx.accounts.multisig.load_mut()?;

 let signatures_left = multisig.sign_multisig(
 &ctx.accounts.admin,
 &Multisig::get_account_infos(&ctx)[1..],
 &Multisig::get_instruction_data(AdminInstruction::SetPerpetualsConfig,
params)?,
)?;
 if signatures_left > 0 {
 msg!(
 "Instruction has been signed but more signatures are required: {}",
 signatures_left
);
 return Ok(signatures_left);
 }

 let perpetuals = ctx.accounts.perpetuals.as_mut();

 perpetuals.permissions.allow_ungated_trading = params.allow_ungated_trading;

 perpetuals.voltage_multiplier = params.voltage_multiplier;
 perpetuals.trading_discount = params.trading_discount;
 perpetuals.referral_rebate = params.referral_rebate;
 perpetuals.referral_discount = params.referral_discount;

 if !perpetuals.validate() {
 return err!(PerpetualsError::InvalidPerpetualsConfig);
 }

programs/perpetuals/src/state/perpetuals.rs

 pub fn validate(&self) -> bool {
 for i in 0..6 {
 if self.trading_discount[i] as u128 > Self::RATE_POWER
 || self.referral_rebate[i] as u128 > Self::RATE_POWER
 || self.referral_discount as u128 > Self::RATE_POWER {
 return false;
 }
 }

 true
 }

programs/perpetuals/src/instructions/set_pool_config.rs

pub fn set_pool_config<'info>(
 ctx: Context<'_, '_, '_, 'info, SetPoolConfig<'info>>,
 params: &SetPoolConfigParams,
) -> Result<u8> {
 // validate signatures
 let mut multisig = ctx.accounts.multisig.load_mut()?;

 let signatures_left = multisig.sign_multisig(
 &ctx.accounts.admin,
 &Multisig::get_account_infos(&ctx)[1..],
 &Multisig::get_instruction_data(AdminInstruction::SetPoolConfig, params)?,
)?;
 if signatures_left > 0 {
 msg!(
 "Instruction has been signed but more signatures are required: {}",
 signatures_left
);
 return Ok(signatures_left);
 }

 let pool = ctx.accounts.pool.as_mut();

 pool.permissions = params.permissions;
 pool.oracle_authority = params.oracle_authority;
 pool.max_aum_usd = params.max_aum_usd;
 pool.staking_fee_share_bps = params.staking_fee_share_bps;
 pool.vp_volume_factor = params.vp_volume_factor;

 if !pool.validate() {
 return err!(PerpetualsError::InvalidPoolConfig);
 }

programs/perpetuals/src/state/pool.rs

 pub fn validate(&self) -> bool {
 for ratio in &self.ratios {
 if !ratio.validate() {
 return false;
 }
 }

 // check target ratios add up to 1
 if !self.ratios.is_empty()
 && self
 .ratios
 .iter()
 .map(|&x| (x.target as u128))
 .sum::<u128>()
 != Perpetuals::BPS_POWER
 {
 return false;
 }

 // check custodies are unique
 for i in 1..self.custodies.len() {
 if self.custodies[i..].contains(&self.custodies[i - 1]) {
 return false;
 }
 }

 // check markets are unique
 for i in 1..self.markets.len() {
 if self.markets[i..].contains(&self.markets[i - 1]) {
 return false;
 }
 }

 !self.name.is_empty() && self.name.len() <= 64 && self.custodies.len() ==
self.ratios.len()
 }

BVSS

AO:S/AC:L/AX:L/C:N/I:N/A:L/D:M/Y:C/R:N/S:U (2.4)

Recommendation
To address this issue, it is recommended to take the following steps:
1. Initialize the values of these fields during account creation, setting them to valid and expected values.
This ensures that the account starts with appropriate configurations, minimizing the risk of erroneous
behavior.
2. Add a check to the instructions responsible for modifying these values, to verify that they are not set
to zero.
By implementing these measures, the system can ensure that perpetuals and pools are properly
configured from the outset and that any modifications to their parameters are validated to prevent
potential issues and loss of user benefits and rewards.

R e m e d i a t i o n P l a n

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AL%2FD%3AM%2FY%3AC%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AL%2FD%3AM%2FY%3AC%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AL%2FD%3AM%2FY%3AC%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AL%2FD%3AM%2FY%3AC%2FR%3AN%2FS%3AU

PARTIALLY SOLVED: The Flash Trade team has been implemented several key adjustments. Firstly, the
values staking_fee_share_bps and vp_volume_factor have been included as arguments in the
AddPool instruction. This ensures they are explicitly set during pool creation, preventing them from being
initialized to zero by default as previously. Additionally, a validation has been implemented to ensure
staking_fee_share_bps cannot be set to zero.
Furthermore, to prevent previous default initialization for voltage_multiplier, trading_discount,
referral_rebate, and referral_discount, these values have been added as arguments in the Init
instruction.
These modifications empower administrators to define these values upon initialization. However, apart
from staking_fee_share_bps, the other added values lack validation checks and could still
inadvertently be set to zero.

Remediation Hash
https://github.com/flash-trade/flash-contracts-
closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b

https://github.com/flash-trade/flash-contracts-closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b
https://github.com/flash-trade/flash-contracts-closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b

7. 6 (H A L - 0 4) R I S K O F LO ST U N C L A I M E D R E WA R D S D U E TO

I F F L P STA K E M I S C O N F I G U R AT I O N

// LOW

Description

A user's Flp stake account encompasses various fields, with the fee_share_bps parameter being of
utmost importance. Upon initialization triggered by the DepositStake call, this parameter mirrors the
pool's staking_fee_share_bps, aligning the user's stake with the pool's fee structure. Furthermore,
fee_share_bps plays a pivotal role in determining the user's rewards, slated for collection in the
CollectStakeRewards instruction.
The SetFlpStakeConfig instruction, administered by an admin, allows for the adjustment of the
fee_share_bps value within a user's Flp stake account, typically set to 70%. However, a critical oversight
emerges: the new value undergoes insu�cient validation, potentially permitting it to be erroneously set,
even to zero, without adequate checks.
This oversight could lead to unintended consequences if the instruction is not invoked again to rectify
the value. In such a scenario where it is set to zero, when the user requests a reward collection via
CollectStakeReward, their rewards are calculated as zero, resulting in the user receiving no rewards.
Consequently, any unclaimed rewards are forfeited, diverted entirely towards protocol fees.
programs/perpetuals/src/instructions/deposit_stake.rs

if flp_stake.is_initialized == false {
 flp_stake.fee_share_bps = pool.staking_fee_share_bps;
 flp_stake.bump =
*ctx.bumps.get("flp_stake_account").ok_or(ProgramError::InvalidSeeds)?;
 flp_stake.is_initialized = true;
 }
 flp_stake.owner = *ctx.accounts.owner.key;

programs/perpetuals/src/instructions/set_flp_stake_config.rs

pub fn set_flp_stake_config<'info>(
 ctx: Context<'_, '_, '_, 'info, SetFlpStakeConfig<'info>>,
 params: &SetFlpStakeConfigParams,
) -> Result<u8> {
 // validate signatures
 let mut multisig = ctx.accounts.multisig.load_mut()?;

 let signatures_left = multisig.sign_multisig(
 &ctx.accounts.admin,
 &Multisig::get_account_infos(&ctx)[1..],
 &Multisig::get_instruction_data(AdminInstruction::SetFlpStakeConfig,
params)?,
)?;
 if signatures_left > 0 {

http://stake.rs/
http://config.rs/

 msg!(
 "Instruction has been signed but more signatures are required: {}",
 signatures_left
);
 return Ok(signatures_left);
 }

 let flp_stake = ctx.accounts.flp_stake_account.as_mut();
 flp_stake.fee_share_bps = params.fee_share_bps;

programs/perpetuals/src/instructions/collect_stake_reward.rs

 let user_reward = math::checked_as_u64(math::checked_div(
 math::checked_mul(flp_stake.unclaimed_rewards as u128,
 flp_stake.fee_share_bps as u128
)?,
 Perpetuals::BPS_POWER
)?)?;

 // transfer tokens to user
 msg!("Transfer flp tokens");
 perpetuals.transfer_tokens(
 ctx.accounts.fee_custody_token_account.to_account_info(),
 ctx.accounts.receiving_token_account.to_account_info(),
 ctx.accounts.transfer_authority.to_account_info(),
 ctx.accounts.token_program.to_account_info(),
 user_reward,
)?;

 fee_custody.fees_stats.paid = math::checked_add(fee_custody.fees_stats.paid,
user_reward as u128)?;
 fee_custody.fees_stats.protocol_fee = math::checked_add(
 fee_custody.fees_stats.protocol_fee,
 math::checked_sub(flp_stake.unclaimed_rewards, user_reward)?
)?;

 if ctx.remaining_accounts.len() == 1 {
 let mut trading_account = Box::new(Account::
<Trading>::try_from(&ctx.remaining_accounts[0])?);
 trading_account.stats.lp_rewards_usd =
math::checked_add(trading_account.stats.lp_rewards_usd, user_reward as u128)?;
 // convert this to usd value later when shofting from non usdc fee
distribution
 trading_account.exit(&ID)?;
 }

http://reward.rs/

 flp_stake.unclaimed_rewards = 0;

BVSS

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:C/R:N/S:U (2.0)

Recommendation

To effectively address this issue, it is advisable to bolster the SetFlpStakeConfig instruction with
robust validation checks. These checks should meticulously verify that the provided fee_share_bps value
is both valid and non-zero. By conducting this validation prior to any alterations to the user's Flp stake
account, the likelihood of misconfigurations can be significantly reduced.
Additionally, it is worth considering the synchronization of this value with the current pool's
staking_fee_share_bps if the latter is non-zero. This ensures alignment between the user's Flp stake
configuration and the prevailing parameters of the associated pool, promoting consistency and
minimizing potential discrepancies.

R e m e d i a t i o n P l a n

SOLVED: The Flash Trade team fixed this issue in commits 1e44c35 and 60b3258: several adjustments
have been made to ensure that the staking_fee_share_bps of the pool cannot be set to zero. These
modifications have been applied to the AddPool, InitStaking, SetPoolConfig instructions.
Additionally, measures have been taken to validate the fee_share_bps of the user's flp_stake_account
to prevent it from being set in the SetFlpStakingConfig instruction.

Remediation Hash
https://github.com/Halborn/Flash-trade--flash-contracts-
closed/commit/60b32588eaa37bb529d25f5a1ed76ab4e68cdc47

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AC%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AC%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AC%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AC%2FR%3AN%2FS%3AU
https://github.com/Halborn/Flash-trade--flash-contracts-closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b
https://github.com/Halborn/Flash-trade--flash-contracts-closed/commit/60b32588eaa37bb529d25f5a1ed76ab4e68cdc47
https://github.com/Halborn/Flash-trade--flash-contracts-closed/commit/60b32588eaa37bb529d25f5a1ed76ab4e68cdc47
https://github.com/Halborn/Flash-trade--flash-contracts-closed/commit/60b32588eaa37bb529d25f5a1ed76ab4e68cdc47

7.7 (H A L - 0 9) M I S S I N G VA L I DAT I O N FO R O R AC L E

AU T H O R I T Y A D D R ES S

// INFORMATIONAL

Description
The AddPool instruction empowers administrators to add pools by supplying multiple accounts, including
oracle_authority.

#[instruction(params: AddPoolParams)]#[instruction(params: AddPoolParams)]
pub struct AddPool<'info> {pub struct AddPool<'info> {
 #[account(mut)]#[account(mut)]
 pub admin: Signer<'info>,pub admin: Signer<'info>,

 /// CHECK: authority for backup oracle/// CHECK: authority for backup oracle
 pub oracle_authority: AccountInfo<'info>,pub oracle_authority: AccountInfo<'info>,

This account is designated for oracles of type Pyth, and it comes into play if the last update time of the
oracle surpasses the value provided for max_price_age_sec (corresponding to oracleParam in
AddCustody and SetCustodyConfig).
However, the instruction, as SetPoolConfig, currently lacks a validation check for the oracle_authority
address.
programs/perpetuals/src/instructions/add_pool.rs

pool.name = params.name.clone();pool.name = params.name.clone();
 pool.permissions = params.permissions;pool.permissions = params.permissions;
 pool.inception_time = perpetuals.get_time()?;pool.inception_time = perpetuals.get_time()?;
 pool.flp_mint = ctx.accounts.lp_token_mint.key();pool.flp_mint = ctx.accounts.lp_token_mint.key();
 pool.oracle_authority = ctx.accounts.oracle_authority.key();pool.oracle_authority = ctx.accounts.oracle_authority.key();
 pool.max_aum_usd = params.max_aum_usd;pool.max_aum_usd = params.max_aum_usd;
 pool.bump =pool.bump =
*ctx.bumps.get("pool").ok_or(ProgramError::InvalidSeeds)?;*ctx.bumps.get("pool").ok_or(ProgramError::InvalidSeeds)?;
 pool.flp_mint_bump = *ctxpool.flp_mint_bump = *ctx
 .bumps.bumps
 .get("lp_token_mint").get("lp_token_mint")
 .ok_or(ProgramError::InvalidSeeds)?;.ok_or(ProgramError::InvalidSeeds)?;

Consequently, it allows even a zero address to be set, which leads to a failure of the instruction when
attempting to retrieve the oracle price in the aforementioned scenario.
programs/perpetuals/src/state/oracle.rs

 if last_update_age_sec <= max_price_age_sec as i64 {
 Ok((
 OraclePrice::new(math::checked_as_u64(pyth_price.price)?,

pyth_price.expo),
 OraclePrice::new(math::checked_as_u64(pyth_ema_price.price)?,
pyth_ema_price.expo),
 pyth_price.conf,
 false,
 false
))
 } else {
 // Pyth oracle price is stale on mainnet, try to fetch price from
permissionless cache
 // Get what should be the Ed25519Program signature verification
instruction.
 let signature_ix: Instruction =
 sysvar::instructions::load_instruction_at_checked(0, ix_sysvar)?;
 /*require_eq!(
 signature_ix.program_id,
 ed25519_program::ID,
 PerpetualsError::PermissionlessOracleMissingSignature
);*/
 let expected_size = 112 + 4 + (36 * custodies_len); //expected size for
Vec<CustomOracle>
 require!(
 signature_ix.accounts.is_empty() // no accounts touched
 && signature_ix.data[0] == 0x01 // only one ed25519 signature
 && signature_ix.data.len() == expected_size, // data len matches
exactly the expected
 PerpetualsError::PermissionlessOracleMalformedEd25519Data
);
 // Manually access offsets for signer pubkey and message data according
to:
 // https://docs.solana.com/developing/runtime-
facilities/programs#ed25519-program
 let signer_pubkey = &signature_ix.data[16..16 + 32];
 require!(
 signer_pubkey == authority.to_bytes(),
 PerpetualsError::PermissionlessOracleSignerMismatch
);

BVSS

AO:S/AC:L/AX:L/C:N/I:N/A:H/D:M/Y:C/R:P/S:U (1.3)

Recommendation

To address the issue, it is necessary to implement a validation check within the AddPooland
SetPoolConfig instructions to ensure that the oracle_authority address provided is not set to zero. This

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AM%2FY%3AC%2FR%3AP%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AM%2FY%3AC%2FR%3AP%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AM%2FY%3AC%2FR%3AP%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AM%2FY%3AC%2FR%3AP%2FS%3AU

can be achieved by adding a conditional statement that verifies the validity of the address before
proceeding with the pool addition or modification process. If the address is found to be zero or invalid, an
appropriate error message should be returned, indicating that a valid oracle authority address must be
provided.
This enhancement will help prevent failures in the instruction due to invalid oracle authority addresses
and ensure the smooth execution of pool addition operations.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Flash team acknowledged this finding.

7. 8 (H A L - 0 2) R E D U N DA N T P E R M I S S I O N S

// INFORMATIONAL

Description
Perpetuals, pools, and custody are structured with diverse data components, including a spectrum of
permissions that govern operations within the program based on their designated values. These values
are established during the initialization of these accounts through instructions like Init, AddPool, and
AddCustody, and they remain adjustable via instructions such as SetPermissions, SetPoolConfig , and
SetCustodyConfig. However, specific permissions like allow_flp_staking, allow_liquidation,
allow_fee_discounts, and allow_referral_rebates lack operational control utility or any discernible
purpose, rendering them irrelevant.
programs/perpetuals/src/state/perpetuals.rs

pub struct Permissions {
 pub allow_swap: bool,
 pub allow_add_liquidity: bool,
 pub allow_remove_liquidity: bool,
 pub allow_open_position: bool,
 pub allow_close_position: bool,
 pub allow_collateral_withdrawal: bool,
 pub allow_size_change: bool,
 pub allow_liquidation: bool,
 pub allow_flp_staking: bool,
 pub allow_fee_distribution: bool,
 pub allow_ungated_trading: bool,
 pub allow_fee_discounts: bool,
 pub allow_referral_rebates: bool,
}

programs/perpetuals/src/instructions/init.rs

pub struct InitParams {pub struct InitParams {
 pub min_signatures: u8,pub min_signatures: u8,
 pub permissions: Permissions,pub permissions: Permissions,
}}

programs/perpetuals/src/instructions/add_pool.rs

pub struct AddPoolParams {pub struct AddPoolParams {
 pub name: String,pub name: String,
 pub permissions: Permissions,pub permissions: Permissions,
 pub max_aum_usd: u128,pub max_aum_usd: u128,
 pub metadata_title: String, pub metadata_title: String,

http://perpetuals.rs/
http://perpetuals.rs/
http://pool.rs/

 pub metadata_symbol: String, pub metadata_symbol: String,
 pub metadata_uri: String,pub metadata_uri: String,
}}

programs/perpetuals/src/instructions/add_custody.rs

pub struct AddCustodyParams {pub struct AddCustodyParams {
 pub is_stable: bool,pub is_stable: bool,
 pub depeg_adjustment: bool,pub depeg_adjustment: bool,
 pub is_virtual: bool,pub is_virtual: bool,
 pub oracle: OracleParams,pub oracle: OracleParams,
 pub pricing: PricingParams,pub pricing: PricingParams,
 pub permissions: Permissions,pub permissions: Permissions,
 pub fees: Fees,pub fees: Fees,
 pub borrow_rate: BorrowRateParams,pub borrow_rate: BorrowRateParams,
 pub ratios: Vec<TokenRatios>,pub ratios: Vec<TokenRatios>,
}}

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
To address this issue effectively, it is advisable to remove the redundant permissions that lack
operational significance. These permissions ought to be eliminated from both the initialization process of
Perpetuals, pools, and custody, as well as from the instructions responsible for modifying their
configuration. Furthermore, it is essential to review and adjust any associated functionality or logic to
align with the removal of these permissions. By taking these steps, the system will be streamlined and
optimized, enhancing its clarity and functionality.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Flash team acknowledged this finding.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU

7. 9 (H A L - 0 8) L AC K O F E R RO R H A N D L I N G I F D I F F E R E N T

C O L L AT E R A L C U STO DY I N P E R P C O M P O SA B I L I T Y

// INFORMATIONAL

Description
Perp-composability enables users to execute swap operations concurrently with other actions such as
opening or closing positions, as well as adding and removing collateral, all within a single instruction call.
Specifically, these combinations include:

Swap and OpenPosition
Swap and AddCollateral
ClosePosition and Swap
RemoveCollateral and Swap

To achieve this, users must provide all necessary accounts to execute the set of transactions as desired.
However, the current implementation lacks validation to ensure that the dispensing custody of the swap
in the first and second instructions corresponds to the collateral custody. Similarly, the collateral custody
of the swap in the third and fourth instructions does not necessarily match the receiving custody.
While this oversight does not pose a direct security risk as the second part of the instruction will fail in
the perpetuals program if mismatches occur, it is advisable to add validation in perp-composability to
gracefully handle errors.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
To address the issue, it is essential to implement validation checks within the perp-composability
functionality to ensure the alignment of custody accounts in swap operations. This can be achieved by
verifying that the dispensing custody of the swap matches the collateral custody in the first and second
instructions, and that the collateral custody of the swap matches the receiving custody in the third and
fourth instructions.
Additionally, error handling mechanisms should be incorporated to gracefully handle cases where custody
mismatches occur. This could involve returning appropriate error messages or instructions to guide users
in rectifying the discrepancies.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Flash team acknowledged this finding.

Remediation Hash
https://github.com/flash-trade/flash-contracts-
closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://github.com/flash-trade/flash-contracts-closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b
https://github.com/flash-trade/flash-contracts-closed/commit/1e44c35c0a5a0cb8927111ef40cf5284be6bca8b

8 . AU TO M AT E D T EST I N G

Cargo-Audit
ID Crate Description

RUSTSEC-2022-
0093

ed25519-
dalek

Double Public Key Signing Function Oracle Attack on ed25519-dalek

RUSTSEC-2024-
0003

h2
Resource exhaustion vulnerability in h2 may lead to Denial of Service
(DoS)

RUSTSEC-2024-
0019

mio Tokens for named pipes may be delivered after deregistration

RUSTSEC-2023-
0065

tungstenite Tungstenite allows remote attackers to cause a denial of service

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

