
Solana Labs -
Perpetuals

Solana Program Security Audit

Prepared by: Halborn

Date of Engagement: February 14th, 2023 - April 3rd, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 6

1 EXECUTIVE OVERVIEW 7

1.1 INTRODUCTION 8

1.2 AUDIT SUMMARY 8

1.3 TEST APPROACH & METHODOLOGY 9

RISK METHODOLOGY 9

1.4 SCOPE 11

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 12

3 FINDINGS & TECH DETAILS 13

3.1 (HAL-01) PROTOCOL FEES AND SOL FEES LOCKED PERMANENTLY - HIGH

15

Description 15

Code Location 15

Risk Level 18

Proof of Concept 18

Recommendation 19

Remediation Plan 19

3.2 (HAL-02) MINIMUM MULTISIG THRESHOLD CHECK MISSING - LOW 20

Description 20

Code Location 20

Risk Level 21

Recommendation 21

Remediation Plan 22

3.3 (HAL-03) ORACLE ADDRESSES CHECK MISSING - LOW 23

1

Description 23

Code Location 23

Risk Level 24

Recommendation 24

Remediation Plan 24

3.4 (HAL-04) CUSTODY TOKEN MINT ACCOUNT CHECK MISSING - LOW 25

Description 25

Code Location 25

Risk Level 26

Recommendation 26

Remediation Plan 27

3.5 (HAL-05) CUSTODY CONFIG VALUES CAN BE UPDATED ANYTIME - LOW 28

Description 28

Code Location 28

Risk Level 30

Recommendation 30

Remediation Plan 30

3.6 (HAL-06) PERPETUAL PERMISSIONS ARE APPLIED GLOBALLY - INFORMA-

TIONAL 31

Description 31

Code Location 31

Risk Level 33

Recommendation 33

Remediation Plan 33

3.7 (HAL-07) REDUNDANT FIELDS OF THE PERPETUALS ACCOUNT - INFORMA-

TIONAL 34

2

Description 34

Code Location 34

Risk Level 36

Recommendation 36

Remediation Plan 36

3.8 (HAL-08) REDUNDANT FUNCTION - INFORMATIONAL 37

Description 37

Code Location 37

Risk Level 38

Recommendation 38

Remediation Plan 38

3.9 (HAL-09) POSSIBLE RUST PANICS DUE TO UNSAFE UNWRAP USAGE -

INFORMATIONAL 39

Description 39

Code Location 39

Risk Level 40

Recommendation 40

Remediation Plan 41

4 MANUAL TESTING 42

4.1 CLOSE CUSTODY WHEN CUSTODY TOKEN ACCOUNT AMOUNT IS NOT ZERO YET

43

Description 43

Results 43

4.2 REMOVE POOL BEFORE CUSTODY ACCOUNT 44

Description 44

Results 44

3

4.3 SETTING MORE ADMINS THAN ALLOWED 45

Description 45

Results 45

4.4 ADD COLLATERAL BY AN INCORRECT 46

Description 46

Results 46

4.5 REMOVE MORE LIQUIDITY THAN ADDED 47

Description 47

Results 47

4.6 CLOSE POSITION BY UNAUTHORIZED USER 48

Description 48

Results 48

5 AUTOMATED TESTING 49

5.1 AUTOMATED VULNERABILITY SCANNING 50

Description 50

Results 50

5.2 AUTOMATED ANALYSIS 51

Description 51

Results 51

5.3 UNSAFE RUST CODE DETECTION 52

Description 52

Results 53

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 02/23/2023 Isabel Burruezo

0.2 Document Updates 03/28/2023 Isabel Burruezo

0.3 Final Draft 03/31/2023 Isabel Burruezo

0.4 Draft Review 04/03/2023 Piotr Cielas

0.5 Draft Review 04/03/2023 Gabi Urrutia

1.0 Remediation Plan 04/20/2023 Isabel Burruezo

1.1 Remediation Plan Review 04/20/2023 Piotr Cielas

1.2 Remediation Plan Review 04/21/2023 Gabi Urrutia

5

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

Isabel Burruezo Halborn Isabel.Burruezo@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Isabel.Burruezo@halborn.com

7

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

The Solana Perpetuals protocol is an open-source implementation of a

noncustodial decentralized exchange that supports leveraged trading in a

variety of assets.

Solana Labs engaged Halborn to conduct a security audit on their Solana

program, beginning on February 14th, 2023 and ending on April 3rd, 2023

. The security assessment was scoped to the program provided in the

perpetuals GitHub repository. Commit hashes and further details can be

found in the Scope section of this report.

1.2 AUDIT SUMMARY

The team at Halborn was provided seven weeks for the engagement and as-

signed a full-time security engineer to audit the security of the programs

in scope. The security engineer is a blockchain and Solana program secu-

rity expert with advanced penetration testing and Solana program hacking

skills, and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Identify potential security issues within the programs

In summary, Halborn identified some improvements to reduce the likelihood

and impact of risks. The issue with higher security risk has been

successfully addressed by Solana Labs , which is the following:

• Protocol fees and SOL fees locked permanently

Solana Labs acknowledged and accepted the risk of the rest of the findings

since their impact were low and informational. In addition, some of them

were confirmed that this is a feature and that this is expected behavior.

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com//client/perpetuals

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the Solana program audit. While

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

programs and can quickly identify items that do not follow security best

practices.

The following phases and associated tools were used throughout the term

of the audit:

• Research into the architecture, purpose, and use of the platform.

• Program manual code review and walkthrough to identify logic issues.

• Mapping out possible attack vectors

• Thorough assessment of safety and usage of critical Rust variables

and functions in scope that could lead to arithmetic vulnerabilities.

• Finding unsafe Rust code usage (cargo-geiger)

• Scanning dependencies for known vulnerabilities (cargo audit).

• Local runtime testing (solana-test-framework)

• Scanning for common Solana vulnerabilities (soteria)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

9

EX
EC

UT
IV

E
OV

ER
VI

EW

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

10

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

Code repositories:

1. Perpetuals

• Repository: perpetuals

• Commit ID: dc5b9076db580828dbd4d0291940c72694edb03d

• Programs in scope:

1. perpetuals (perpetuals/program)

Out-of-scope: External libraries, dependencies and financial related at-

tacks.

11

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com//client/perpetuals
https://github.com//client/perpetuals/commit/dc5b9076db580828dbd4d0291940c72694edb03d

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 1 0 4 4

IM
PA
CT

LIKELIHOOD

(HAL-02)
(HAL-03)

(HAL-01)

(HAL-04)
(HAL-05)

(HAL-06)
(HAL-07)
(HAL-08)
(HAL-09)

12

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) PROTOCOL FEES AND SOL FEES
LOCKED PERMANENTLY

High SOLVED - 04/07/2023

(HAL-02) MINIMUM MULTISIG THRESHOLD
CHECK MISSING

Low RISK ACCEPTED

(HAL-03) ORACLE ADDRESSES CHECK
MISSING

Low RISK ACCEPTED

(HAL-04) CUSTODY TOKEN MINT ACCOUNT
CHECK MISSING

Low RISK ACCEPTED

(HAL-05) CUSTODY CONFIG VALUES CAN
BE UPDATED ANYTIME

Low RISK ACCEPTED

(HAL-06) PERPETUAL PERMISSIONS ARE
APPLIED GLOBALLY

Informational ACKNOWLEDGED

(HAL-07) REDUNDANT FIELDS OF THE
PERPETUALS ACCOUNT

Informational ACKNOWLEDGED

(HAL-08) REDUNDANT FUNCTION Informational ACKNOWLEDGED

(HAL-09) POSSIBLE RUST PANICS DUE
TO UNSAFE UNWRAP USAGE

Informational ACKNOWLEDGED

13

EX
EC

UT
IV

E
OV

ER
VI

EW

14

FINDINGS & TECH
DETAILS

3.1 (HAL-01) PROTOCOL FEES AND SOL
FEES LOCKED PERMANENTLY - HIGH

Description:

The WithdrawFees instruction allows admins to transfer protocol fees

from the custody_token_account recollected and SOL fees. Those

SOL fees are the fees collected when some accounts are removed like

the custody or pool and the rent is transferred to the transfer_authority.

To withdraw SOL it is necessary:

* it is necessary the transfer authority’s lamport balance is greater

than the rent-exempt minimum. This happens when the custody account is

removed, otherwise the instruction fails. However, to remove the custody

account , however it is necessary the balance of the custody_token_account

is zero.

To withdraw protocol fees:

* it is necessary to provide the custody account and the

custody_token_account. The former account then must exist, and

the second one needs to hold more tokens than the amount required to

withdraw.

As can be seen in the above description, the requirements for withdrawing

the fees conflict so that the instruction always fails and it is not

possible to withdraw any of protocol fees or SOL fees.

Code Location:

Listing 1: src/instructions/withdraw_fees.rs

120 msg!(

121 "Withdraw token fees: {} / {}",

122 params.token_amount ,

123 custody.assets.protocol_fees

124);

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

125

126 if custody.assets.protocol_fees < params.token_amount {

127 return Err(ProgramError :: InsufficientFunds.into());

128 }

129 custody.assets.protocol_fees =

130 math:: checked_sub(custody.assets.protocol_fees , params

ë .token_amount)?;

131

132 ctx.accounts.perpetuals.transfer_tokens(

133 ctx.accounts.custody_token_account.to_account_info (),

134 ctx.accounts.receiving_token_account.to_account_info ()

ë ,

135 ctx.accounts.transfer_authority.to_account_info (),

136 ctx.accounts.token_program.to_account_info (),

137 params.token_amount ,

138)?;

139 }

140

141 // transfer sol fees from the custody to the receiver

142 if params.sol_amount > 0 {

143 let balance = ctx.accounts.transfer_authority.try_lamports

ë ()?;

144 let min_balance = sysvar ::rent::Rent::get().unwrap ().

ë minimum_balance (0);

145

146 let available_balance = if balance > min_balance {

147 math:: checked_sub(balance , min_balance)?

148 } else {

149 0

150 };

151

152 msg!(

153 "Withdraw SOL fees: {} / {}",

154 params.sol_amount ,

155 available_balance

156);

157

158 if available_balance < params.sol_amount {

159 return Err(ProgramError :: InsufficientFunds.into());

160 }

161

162 Perpetuals :: transfer_sol_from_owned(

163 ctx.accounts.transfer_authority.to_account_info (),

164 ctx.accounts.receiving_sol_account.to_account_info (),

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

165 params.sol_amount ,

166)?;

Listing 2: src/instructions/remove_custody.rs (Lines 101,111)

100 require!(

101 ctx.accounts.custody_token_account.amount == 0,

102 PerpetualsError :: InvalidCustodyState

103);

104

105 // remove token from the list

106 let pool = ctx.accounts.pool.as_mut ();

107 let token_id = pool.get_token_id (&ctx.accounts.custody.key())

ë ?;

108 pool.tokens.remove(token_id);

109

110 Perpetuals :: close_token_account(

111 ctx.accounts.transfer_authority.to_account_info (),

112 ctx.accounts.custody_token_account.to_account_info (),

113 ctx.accounts.token_program.to_account_info (),

114 ctx.accounts.transfer_authority.to_account_info (),

115 &[&[

116 b"transfer_authority",

117 &[ctx.accounts.perpetuals.transfer_authority_bump],

118]],

119)?;

Listing 3: src/instructions/remove_pool.rs (Lines 86,87)

75 if signatures_left > 0 {

76 msg!(

77 "Instruction has been signed but more signatures are

ë required: {}",

78 signatures_left

79);

80 msg!("signatures_left: {:?}", signatures_left);

81

82 return Ok(signatures_left);

83 }

84

85 require!(

86 ctx.accounts.pool.tokens.is_empty (),

87 PerpetualsError :: InvalidPoolState

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

88);

89

90 // remove pool from the list

91 let perpetuals = ctx.accounts.perpetuals.as_mut ();

92 let pool_idx = perpetuals

93 .pools

94 .iter()

95 .position (|x| *x == ctx.accounts.pool.key())

96 .ok_or::<Error >(PerpetualsError :: InvalidPoolState.into())

ë ?;

97 perpetuals.pools.remove(pool_idx);

Risk Level:

Likelihood - 5

Impact - 3

Proof of Concept:

Steps To Reproduce

1) Init Perpetuals

2) Add Pool

3) Add Custody

4) Alice adds Liquidity

5) Alice opens a position

6) Withdraw Fees

Notice that although it would be possible to withdraw the protocol fees,

the SOL fees cannot be withdrawn since the position is not closed.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to replace the WithdrawFees instruction with two inde-

pendent instructions to withdraw the protocol fees at any time, regardless

of the custody account. This way, it is possible to withdraw SOL fees

when custody is closed without interfering in withdrawing protocol fees.

Remediation Plan:

SOLVED: The Solana Labs team fixed this issue in commit:

- 84bb60bec61b5a463c506f0535567d00f9e59b21:

The WithdrawFees instruction has been split in two separate instructions,

WithdrawFees and WithdrawSOLFees to withdraw protocol fees and SOL fees

respectively. This way it is possible to withdraw both types of fees

independently and successfully fulfilling the necessary requirements for

both.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com//client/perpetuals/pull/21/commits/84bb60bec61b5a463c506f0535567d00f9e59b21

3.2 (HAL-02) MINIMUM MULTISIG
THRESHOLD CHECK MISSING - LOW

Description:

The Init instruction allows the upgrade authority to initialize the per-

petuals account and set the multisig’s signers. The instruction handler

requires the transaction sender to provide a selection of accounts and

parameters, including min_signatures. This parameter sets the signatures

threshold required for a transaction to be considered valid. Likewise,

the SetAdminSigners instruction handler allows setting a new signers list

and new min_signatures.

However, both instructions handlers allow setting the min_signatures

field of multisig with a value equal to 1. Setting the threshold to 1

results in having no multisig functionality at all because only one user

controls the account.

Code Location:

Listing 4: src/instruction/init.rs (Lines 63,78)

62 pub struct InitParams {

63 pub min_signatures: u8 ,

64 pub allow_swap: bool ,

65 pub allow_add_liquidity: bool ,

66 pub allow_remove_liquidity: bool ,

67 pub allow_open_position: bool ,

68 pub allow_close_position: bool ,

69 pub allow_pnl_withdrawal: bool ,

70 pub allow_collateral_withdrawal: bool ,

71 pub allow_size_change: bool ,

72 }

73

74 pub fn init(ctx: Context <Init >, params: &InitParams) -> Result <()>

ë {

75 // initialize multisig , this will fail if account is already

ë initialized

76 let mut multisig = ctx.accounts.multisig.load_init ()?;

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

77

78 multisig.set_signers(ctx.remaining_accounts , params.

ë min_signatures)?;

Listing 5: src/state/multisig.rs (Line 16)

13 pub struct Multisig {

14 pub num_signers: u8 ,

15 pub num_signed: u8 ,

16 pub min_signatures: u8 ,

17 pub instruction_accounts_len: u8 ,

18 pub instruction_data_len: u16 ,

19 pub instruction_hash: u64 ,

20 pub signers: [Pubkey; 6], // Multisig :: MAX_SIGNERS

21 pub signed: [bool; 6], // Multisig :: MAX_SIGNERS

22 pub bump: u8,

23 }

Listing 6: src/instruction/set_admin_signers.rs (Line 24)

23 pub struct SetAdminSignersParams {

24 pub min_signatures: u8 ,

25 }

26

27 pub fn set_admin_signers <'info >(

28 ctx: Context <'_, '_, '_, 'info , SetAdminSigners <'info >>,

29 params: &SetAdminSignersParams ,

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

It is recommended to add a check to verify that the value of min_signatures

passed as a parameter is equal to or greater than three, as well as the

number of remaining accounts provided as admins .

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

RISK ACCEPTED: The Solana Labs team accepted the risk of this finding.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) ORACLE ADDRESSES CHECK
MISSING - LOW

Description:

The Oracle accounts required by the AddCustody and SetCustodyConfig in-

struction handlers are not validated. Although it is up to the adminis-

trators to provide the oracle accounts, if they mistakenly provide the

wrong oracle account, the perpetuals program may end up using malicious

price feeders.

Code Location:

Listing 7: src/instruction/add_custody.rs (Line 87)

85 pub struct AddCustodyParams {

86 pub is_stable: bool ,

87 pub oracle: OracleParams ,

88 pub pricing: PricingParams ,

89 pub permissions: Permissions ,

90 pub fees: Fees ,

91 pub target_ratio: u64 ,

92 pub min_ratio: u64 ,

93 pub max_ratio: u64 ,

94 }

95

96 pub fn add_custody <'info >(

Listing 8: src/state/custody.rs (Line 147)

72 pub struct OracleParams {

73 pub oracle_account: Pubkey ,

74 pub oracle_type: OracleType ,

75 pub max_price_error: u64 ,

76 pub max_price_age_sec: u32 ,

77 }

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 9: src/instruction/add_custody.rs (Line 147)

140 let custody = ctx.accounts.custody.as_mut ();

141

142 custody.pool = pool.key();

143 custody.mint = ctx.accounts.custody_token_mint.key();

144 custody.token_account = ctx.accounts.custody_token_account.key

ë ();

145 custody.decimals = ctx.accounts.custody_token_mint.decimals;

146 custody.is_stable = params.is_stable;

147 custody.oracle = params.oracle;

148 custody.pricing = params.pricing;

149 custody.permissions = params.permissions;

150 custody.fees = params.fees;

151 custody.bump = *ctx.bumps.get("custody").ok_or(ProgramError ::

ë InvalidSeeds)?;

152 custody.token_account_bump = *ctx

153 .bumps

154 .get("custody_token_account")

155 .ok_or(ProgramError :: InvalidSeeds)?;

156

157 if !custody.validate () {

158 err!(PerpetualsError :: InvalidCustodyConfig)

159 } else {

160 Ok(0)

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

It is recommended to verify if the oracle account’s owner matches a known

and trusted address before.

Remediation Plan:

RISK ACCEPTED: The Solana Labs team accepted the risk of this finding.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) CUSTODY TOKEN MINT
ACCOUNT CHECK MISSING - LOW

Description:

The AddCustody instruction handler requires the transaction sender to

provide a selection of accounts, including the custody_token_mint ac-

count.

The decimals field of the mint account determines the custody.decimals

value, which the instruction handlers used when calculating fees charged

by the add_liquidity and add_collateral functions. However, this

custody_token_mint provided account is not checked and neither are its

fields, so the decimals value could be other than expected. This could

result in a direct impact to fee calculation results.

It is important to mention that the freeze_authority field is not

checked either.

Code Location:

Listing 10: src/instruction/add_custody.rs (Line 77)

53 #[account(

54 init_if_needed ,

55 payer = admin ,

56 space = Custody ::LEN ,

57 seeds = [b"custody",

58 pool.key().as_ref (),

59 custody_token_mint.key().as_ref ()],

60 bump

61)]

62 pub custody: Box <Account <'info , Custody >>,

63

64 #[account(

65 init_if_needed ,

66 payer = admin ,

67 token ::mint = custody_token_mint ,

68 token :: authority = transfer_authority ,

69 seeds = [b"custody_token_account",

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

70 pool.key().as_ref (),

71 custody_token_mint.key().as_ref ()],

72 bump

73)]

74 pub custody_token_account: Box <Account <'info , TokenAccount >>,

75

76 #[account ()]

77 pub custody_token_mint: Box <Account <'info , Mint >>,

Listing 11: src/instruction/add_custody.rs (Lines 143,145)

140 let custody = ctx.accounts.custody.as_mut ();

141

142 custody.pool = pool.key();

143 custody.mint = ctx.accounts.custody_token_mint.key();

144 custody.token_account = ctx.accounts.custody_token_account.key();

145 custody.decimals = ctx.accounts.custody_token_mint.decimals;

146 custody.is_stable = params.is_stable;

Listing 12: src/instruction/add_custody.rs (Line 203)

198 // update custody stats

199 msg!("Update custody stats");

200 custody.collected_fees.add_liquidity_usd = custody

201 .collected_fees

202 .add_liquidity_usd

203 .wrapping_add(token_price.get_asset_amount_usd(fee_amount ,

ë custody.decimals)?);

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

It is recommended to add a check to verify the mint’s decimals and

authorities are the expected and corresponding ones.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

RISK ACCEPTED: The Solana Labs team accepted the risk of this finding.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) CUSTODY CONFIG VALUES
CAN BE UPDATED ANYTIME - LOW

Description:

The AddCustody instruction handler requires multiple parameters to add a

custody, including Fees and Permissions.

Those custody parameters can be updated anytime and affect positions and

deposits retroactively. The legacy parameter values are not preserved.

This happens in the same way with permission values, they can be changed

at any time by the admin signers to allow or disallow to open or close

positions, add and remove liquidity among others, as it is explained in

HAL_06.

Code Location:

Listing 13: src/instructions/add_custody.rs (Line 90)

85 pub struct AddCustodyParams {

86 pub is_stable: bool ,

87 pub oracle: OracleParams ,

88 pub pricing: PricingParams ,

89 pub permissions: Permissions ,

90 pub fees: Fees ,

91 pub target_ratio: u64 ,

92 pub min_ratio: u64 ,

93 pub max_ratio: u64 ,

94 }

95

96 pub fn add_custody <'info >(

97 ctx: Context <'_, '_, '_, 'info , AddCustody <'info >>,

98 params: &AddCustodyParams ,

Listing 14: src/state/custody.rs

16 pub struct Fees {

17 pub mode: FeesMode ,

18 // fees have implied BPS_DECIMALS decimals

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

19 pub max_increase: u64 ,

20 pub max_decrease: u64 ,

21 pub swap: u64 ,

22 pub add_liquidity: u64 ,

23 pub remove_liquidity: u64 ,

24 pub open_position: u64 ,

25 pub close_position: u64 ,

26 pub liquidation: u64 ,

27 pub protocol_share: u64 ,

28 }

Listing 15: src/instructions/set_custody_config.rs (Line 97)

47 pub struct SetCustodyConfigParams {

48 pub is_stable: bool ,

49 pub oracle: OracleParams ,

50 pub pricing: PricingParams ,

51 pub permissions: Permissions ,

52 pub fees: Fees ,

53 pub target_ratio: u64 ,

54 pub min_ratio: u64 ,

55 pub max_ratio: u64 ,

56 }

57

58 pub fn set_custody_config <'info >(

59 ctx: Context <'_, '_, '_, 'info , SetCustodyConfig <'info >>,

60 params: &SetCustodyConfigParams ,

61) -> Result <u8 > {

62 // validate inputs

63 if params.min_ratio > params.target_ratio || params.

ë target_ratio > params.max_ratio {

64 return Err(ProgramError :: InvalidArgument.into());

65 }

66

67 // validate signatures

68 let mut multisig = ctx.accounts.multisig.load_mut ()?;

69

70 let signatures_left = multisig.sign_multisig(

71 &ctx.accounts.admin ,

72 &Multisig :: get_account_infos (&ctx)[1..],

73 &Multisig :: get_instruction_data(AdminInstruction ::

ë SetCustodyConfig , params)?,

74)?;

75 if signatures_left > 0 {

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

76 msg!(

77 "Instruction has been signed but more signatures are

ë required: {}",

78 signatures_left

79);

80 return Ok(signatures_left);

81 }

82

83 // update pool data

84 let pool = ctx.accounts.pool.as_mut ();

85 let idx = pool.get_token_id (&ctx.accounts.custody.key())?;

86 pool.tokens[idx]. target_ratio = params.target_ratio;

87 pool.tokens[idx]. min_ratio = params.min_ratio;

88 pool.tokens[idx]. max_ratio = params.max_ratio;

89

90 // update custody data

91 let custody = ctx.accounts.custody.as_mut ();

92 custody.is_stable = params.is_stable;

93 custody.oracle = params.oracle;

94 custody.pricing = params.pricing;

95 custody.permissions = params.permissions;

96 custody.fees = params.fees;

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

Consider adding a field in the position to preserve commission rates in

order to keep the original ones for each of them at the time when they

were opened.

Remediation Plan:

RISK ACCEPTED: The Solana Labs team accepted the risk of this finding.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) PERPETUAL PERMISSIONS
ARE APPLIED GLOBALLY -
INFORMATIONAL

Description:

The Init instruction allows the upgrade authority to initialize the per-

petuals account with permissions and set the multisig’s signers. In

addition, the SetPermissions instruction allows changing those permis-

sions for a perpetual’s account.

The AddCustody and SetCustodyConfig instructions require some parameters

like Permissions discussed in HAL-05 which are used to initialize and set

up the custody.

These permissions allow managing access to certain actions like adding

and removing liquidity, opening and closing positions, withdrawing col-

lateral, among others.

However, if any of the allow_collateral_withdrawal, allow_close_position

or allow_remove_liquidity perpetuals account permissions are updated, it

is not possible to carry out that action for any custody. Thus, the

collateral and liquidity cannot be withdrawn by the owners because it

is locked until unlocked. This could result in an issue in a scenario

described in HAL-02.

Code Location:

Listing 16: src/state/perpetuals.rs

26 pub struct Permissions {

27 pub allow_swap: bool ,

28 pub allow_add_liquidity: bool ,

29 pub allow_remove_liquidity: bool ,

30 pub allow_open_position: bool ,

31 pub allow_close_position: bool ,

32 pub allow_pnl_withdrawal: bool ,

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

33 pub allow_collateral_withdrawal: bool ,

34 pub allow_size_change: bool ,

Listing 17: src/instructions/set_permissions.rs

26 pub struct SetPermissionsParams {

27 pub allow_swap: bool ,

28 pub allow_add_liquidity: bool ,

29 pub allow_remove_liquidity: bool ,

30 pub allow_open_position: bool ,

31 pub allow_close_position: bool ,

32 pub allow_pnl_withdrawal: bool ,

33 pub allow_collateral_withdrawal: bool ,

34 pub allow_size_change: bool ,

35 }

36

37 pub fn set_permissions <'info >(

38 ctx: Context <'_, '_, '_, 'info , SetPermissions <'info >>,

39 params: &SetPermissionsParams ,

40) -> Result <u8 > {

Listing 18: src/instructions/set_permissions.rs

69 // update permissions

70 let perpetuals = ctx.accounts.perpetuals.as_mut ();

71 perpetuals.permissions.allow_swap = params.allow_swap;

72 perpetuals.permissions.allow_add_liquidity = params.

ë allow_add_liquidity;

73 perpetuals.permissions.allow_remove_liquidity = params.

ë allow_remove_liquidity;

74 perpetuals.permissions.allow_open_position = params.

ë allow_open_position;

75 perpetuals.permissions.allow_close_position = params.

ë allow_close_position;

76 perpetuals.permissions.allow_pnl_withdrawal = params.

ë allow_pnl_withdrawal;

77 perpetuals.permissions.allow_collateral_withdrawal = params.

ë allow_collateral_withdrawal;

78 perpetuals.permissions.allow_size_change = params.

ë allow_size_change;

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 19: src/instructions/remove_collateral.rs (Line 105)

95 pub fn remove_collateral(

96 ctx: Context <RemoveCollateral >,

97 params: &RemoveCollateralParams ,

98) -> Result <()> {

99 // check permissions

100 msg!("Check permissions");

101

102 let perpetuals = ctx.accounts.perpetuals.as_mut ();

103 let custody = ctx.accounts.custody.as_mut ();

104 require!(

105 perpetuals.permissions.allow_collateral_withdrawal

106 && custody.permissions.allow_collateral_withdrawal ,

107 PerpetualsError :: InstructionNotAllowed

108);

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to carry out the recommendation plan for HAL-02 to make

sure the multisig is activated.

Remediation Plan:

ACKNOWLEDGED: The Solana Labs team acknowledged this finding.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 (HAL-07) REDUNDANT FIELDS OF THE
PERPETUALS ACCOUNT - INFORMATIONAL

Description:

The Init instruction allows initializing the perpetuals account provid-

ing some permissions field’s values, also required by the SetPermissions,

AddCustody and SetCustodyConfig instructions. They are used to setting

permissions in the program and the custody accounts to allow some op-

erations to be carried out or not. However, allow_pnl_withdrawal and

allow_size_change, are never used in the program.

Code Location:

Listing 20: src/state/perpetuals.rs (Lines 32,34)

26 pub struct Permissions {

27 pub allow_swap: bool ,

28 pub allow_add_liquidity: bool ,

29 pub allow_remove_liquidity: bool ,

30 pub allow_open_position: bool ,

31 pub allow_close_position: bool ,

32 pub allow_pnl_withdrawal: bool ,

33 pub allow_collateral_withdrawal: bool ,

34 pub allow_size_change: bool ,

35 }

Listing 21: src/instructions/init.rs (Lines 69,71)

62 pub struct InitParams {

63 pub min_signatures: u8 ,

64 pub allow_swap: bool ,

65 pub allow_add_liquidity: bool ,

66 pub allow_remove_liquidity: bool ,

67 pub allow_open_position: bool ,

68 pub allow_close_position: bool ,

69 pub allow_pnl_withdrawal: bool ,

70 pub allow_collateral_withdrawal: bool ,

71 pub allow_size_change: bool ,

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

72 }

73

74 pub fn init(ctx: Context <Init >, params: &InitParams) -> Result <()>

ë {

Listing 22: src/instructions/set_permissions.rs (Lines 41,43)

35 pub struct SetPermissionsParams {

36 pub allow_swap: bool ,

37 pub allow_add_liquidity: bool ,

38 pub allow_remove_liquidity: bool ,

39 pub allow_open_position: bool ,

40 pub allow_close_position: bool ,

41 pub allow_pnl_withdrawal: bool ,

42 pub allow_collateral_withdrawal: bool ,

43 pub allow_size_change: bool ,

44 }

45

46 pub fn set_permissions <'info >(

47 ctx: Context <'_, '_, '_, 'info , SetPermissions <'info >>,

48 params: &SetPermissionsParams ,

Listing 23: src/instructions/add_custody.rs (Line 89)

86 pub is_stable: bool ,

87 pub oracle: OracleParams ,

88 pub pricing: PricingParams ,

89 pub permissions: Permissions ,

90 pub fees: Fees ,

91 pub target_ratio: u64 ,

92 pub min_ratio: u64 ,

93 pub max_ratio: u64 ,

94 }

95

96 pub fn add_custody <'info >(

97 ctx: Context <'_, '_, '_, 'info , AddCustody <'info >>,

98 params: &AddCustodyParams ,

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to complete the implementation to make use of these

fields or remove them.

Remediation Plan:

ACKNOWLEDGED: The Solana Labs team acknowledged this finding.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 (HAL-08) REDUNDANT FUNCTION -
INFORMATIONAL

Description:

The unsign_multisig() function allows removing the admin signature from

the multisig. However, it has been detected that this function is not

used in the program.

Code Location:

Listing 24: src/state/multisig.rs

200

201 pub fn unsign_multisig (&mut self , signer_account: &AccountInfo)

ë -> Result <()> {

202 // return early if not a signer

203 if !signer_account.is_signer {

204 return Err(ProgramError :: MissingRequiredSignature.into

ë ());

205 }

206

207 // if single signer return

208 if self.num_signers <= 1 || self.num_signed == 0 {

209 return Ok(());

210 }

211

212 // find index of current signer or return error if not

ë found

213 let signer_idx = if let Ok(idx) = self.get_signer_index(

ë signer_account.key) {

214 idx

215 } else {

216 return err!(PerpetualsError ::

ë MultisigAccountNotAuthorized);

217 };

218

219 // if not signed by this account return

220 if !self.signed[signer_idx] {

221 return Ok(());

222 }

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

223

224 // remove signature

225 self.num_signed -= 1;

226 self.signed[signer_idx] = false;

227

228 Ok(())

229 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to complete the implementation to make use of this

function or remove it.

Remediation Plan:

ACKNOWLEDGED: The Solana Labs team acknowledged this finding.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.9 (HAL-09) POSSIBLE RUST PANICS
DUE TO UNSAFE UNWRAP USAGE -
INFORMATIONAL

Description:

The use of helper methods in Rust, such as unwrap, is allowed in dev and

testing environment because those methods are supposed to throw an error

(also known as panic!) when called on Option::None or a Result which is

not Ok. However, keeping unwrap functions in the production environment

is considered bad practice because they may lead to program crashes, which

are usually accompanied by insufficient or misleading error messages.

Code Location:

Listing 25

1 ./ instructions/withdraw_fees.rs :144: let min_balance =

ë sysvar ::rent::Rent::get().unwrap ().minimum_balance (0);

2 ./ state/oracle.rs :321: assert_eq !(12.3 , price.

ë checked_as_f64 ().unwrap ());

3 ./ state/oracle.rs :324: assert_eq !(12300000.0 , price.

ë checked_as_f64 ().unwrap ());

4 ./ state/oracle.rs :330: let scaled = price.scale_to_exponent

ë (-6).unwrap ();

5 ./ state/oracle.rs :334: let scaled = price.scale_to_exponent

ë (-1).unwrap ();

6 ./ state/oracle.rs :338: let scaled = price.scale_to_exponent

ë (1).unwrap ();

7 ./ state/pool.rs :894: math:: checked_mul(amount , 10u64.pow(

ë decimals as u32)).unwrap ()

8 ./ state/pool.rs :899: math:: checked_float_mul(amount , 10

ë u64.pow(decimals as u32) as f64).unwrap (),

9 ./ state/pool.rs :901: .unwrap ()

10 ./ state/pool.rs :911: .unwrap ()

11 ./ state/pool.rs :917: .unwrap ()

12 ./ state/pool.rs :924: assert_eq !(0, pool.get_new_ratio (0, 0,

ë &custody , &token_price).unwrap ());

13 ./ state/pool.rs :932: .unwrap ()

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

14 ./ state/pool.rs :938: .unwrap ()

15 ./ state/pool.rs :944: .unwrap ()

16 ./ state/pool.rs :949: pool.get_new_ratio (0, 0, &custody ,

ë &token_price).unwrap ()

17 ./ state/pool.rs :968: .unwrap ()

18 ./ state/pool.rs :982: .unwrap ()

19 ./ state/pool.rs :1001: .unwrap ()

20 ./ state/pool.rs :1015: .unwrap ()

21 ./ state/pool.rs :1029: .unwrap ()

22 ./ state/pool.rs :1045: .unwrap ()

23 ./ state/pool.rs :1058: .unwrap ()

24 ./ state/pool.rs :1069: .unwrap ()

25 ./ state/pool.rs :1076: .unwrap ()

26 ./ state/pool.rs :1083: .unwrap ()

27 ./ state/pool.rs :1094: .unwrap ()

28 ./ state/pool.rs :1101: .unwrap ()

29 ./ state/pool.rs :1108: .unwrap ()

30 ./ state/pool.rs :1115: .unwrap ()

31 ./ state/pool.rs :1122: .unwrap ()

32 ./ state/pool.rs :1129: .unwrap ()

33 ./ state/pool.rs :1136: .unwrap ()

34 ./ state/pool.rs :1147: .unwrap ()

35 ./ state/pool.rs :1154: .unwrap ()

36 ./ state/pool.rs :1161: .unwrap ()

37 ./ state/pool.rs :1168: .unwrap ()

38 ./ state/pool.rs :1175: .unwrap ()

39 ./ state/pool.rs :1182: .unwrap ()

40 ./ state/pool.rs :1205: .unwrap ()

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended not to use the unwrap function in the production

environment because its use causes panic! and may crash the contract

without verbose error messages. Crashing the system will result in a

loss of availability and, in some cases, even private information stored

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

in the state. Some alternatives are possible, such as propagating the

error with ? instead of unwrapping, or using the error-chain crate for

errors.

Remediation Plan:

ACKNOWLEDGED: The Solana Labs team acknowledged this finding.

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

42

MANUAL TESTING

In the manual testing phase, the following scenarios were simulated.

The scenarios listed below were selected based on the severity of the

vulnerabilities Halborn was testing the program for.

4.1 CLOSE CUSTODY WHEN CUSTODY
TOKEN ACCOUNT AMOUNT IS NOT ZERO YET

Description:

The RemoveCustody instruction allows closing the custody account.

To achieve this, it removes the pool from the token list of the perpet-

uals account and closes the custody account, transferring the remaining

lamports to the transfer_authority account.

It has been tested whether this instruction can be called at any time, so

that custody_token_account tokens would no longer be available for all

other operations.

Results:

No vulnerabilities were identified.

43

MA
NU

AL
TE

ST
IN

G

4.2 REMOVE POOL BEFORE CUSTODY
ACCOUNT

Description:

The RemovePool and RemoveCustody instructions allow closing pool and

custody accounts, respectively. A custody account has a field for the

pool account associated to it. It has been tested if it is possible

to remove a pool before the custody to check if there could be an

inconsistency that could result in a vulnerability.

Results:

No vulnerabilities were identified.

44

MA
NU

AL
TE

ST
IN

G

4.3 SETTING MORE ADMINS THAN ALLOWED

Description:

The Init and SetAdminsigners instructions set the administrator signers

allowed to be part of the multisig. Both instructions need the new

admin signers accounts to be provided as remaining accounts. It is also

necessary to include a parameter, min_signatures, to set the minimum

number of signatories required for an operation to be successfully carried

out.

To achieve this, these instructions call the set_signers() function,

providing the value of the min_signatures parameter and the remaining

accounts mentioned. There is a maximum number of administrators that

can be set, Multisig::MAX_SIGNERS. It has been tested to confirm no

vulnerabilities were introduced, and the functionality is the expected.

Results:

No vulnerabilities were identified.

45

MA
NU

AL
TE

ST
IN

G

4.4 ADD COLLATERAL BY AN INCORRECT

Description:

It has been tested if the AddCollateral instruction’s access control is

correctly implemented or if otherwise, someone could add collateral to

other user’s position.

Results:

No vulnerabilities were identified.

46

MA
NU

AL
TE

ST
IN

G

4.5 REMOVE MORE LIQUIDITY THAN ADDED

Description:

The RemoveLiquidity instruction allows the user who added liquidity pre-

viously remove all or some of it from the custody token account. It

has been checked if this functionality is safe or if otherwise, it is

possible to remove more liquidity than added before and drain some funds.

Results:

No vulnerabilities were identified.

47

MA
NU

AL
TE

ST
IN

G

4.6 CLOSE POSITION BY UNAUTHORIZED
USER

Description:

The ClosePosition instruction allows the position’s owner to close the

position and transferring the tokens to a receiver. It has been tested

that this instruction is safely implemented and nobody could close another

user’s position.

Results:

No vulnerabilities were identified.

48

MA
NU

AL
TE

ST
IN

G

49

AUTOMATED TESTING

5.1 AUTOMATED VULNERABILITY
SCANNING

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was Soteria, a security

analysis service for Solana programs. Soteria performed a scan on all

the programs and sent the compiled results to the analyzers to locate any

vulnerabilities.

Results:

Soteria did not find any vulnerabilities.

50

AU
TO

MA
TE

D
TE

ST
IN

G

5.2 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with detection of well-

known security issues and vulnerabilities. Among the tools used was cargo

-audit, a security scanner for vulnerabilities reported to the RustSec

Advisory Database. All vulnerabilities published in https://crates.io

are stored in a repository named The RustSec Advisory Database. cargo

audit is a human-readable version of the advisory database which performs

a scanning on Cargo.lock. Security Detections are only in scope. All

vulnerabilities shown here were already disclosed in the above report.

However, to better assist the developers maintaining this code, the

auditors are including the output with the dependencies tree, and this

is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

Results:

ID package Short Description

RUSTSEC-2020-0071 time Potential segfault in the time crate.

RUSTSEC-2023-0001 tokio reject_remote_clients Configuration corrup-

tion.

51

AU
TO

MA
TE

D
TE

ST
IN

G

https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2023-0001

5.3 UNSAFE RUST CODE DETECTION

Description:

Halborn used automated security scanners to assist with the detection of

well-known security issues and vulnerabilities. Among the tools used was

cargo-geiger, a security tool that lists statistics related to the usage

of unsafe Rust code in a core Rust codebase and all its dependencies.

52

AU
TO

MA
TE

D
TE

ST
IN

G

Results:

53

AU
TO

MA
TE

D
TE

ST
IN

G

54

AU
TO

MA
TE

D
TE

ST
IN

G

55

AU
TO

MA
TE

D
TE

ST
IN

G

56

AU
TO

MA
TE

D
TE

ST
IN

G

57

AU
TO

MA
TE

D
TE

ST
IN

G

58

AU
TO

MA
TE

D
TE

ST
IN

G

59

AU
TO

MA
TE

D
TE

ST
IN

G

60

AU
TO

MA
TE

D
TE

ST
IN

G

61

AU
TO

MA
TE

D
TE

ST
IN

G

62

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Proof of Concept
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	MANUAL TESTING
	CLOSE CUSTODY WHEN CUSTODY TOKEN ACCOUNT AMOUNT IS NOT ZERO YET
	Description
	Results

	REMOVE POOL BEFORE CUSTODY ACCOUNT
	Description
	Results

	SETTING MORE ADMINS THAN ALLOWED
	Description
	Results

	ADD COLLATERAL BY AN INCORRECT
	Description
	Results

	REMOVE MORE LIQUIDITY THAN ADDED
	Description
	Results

	CLOSE POSITION BY UNAUTHORIZED USER
	Description
	Results

	AUTOMATED TESTING
	AUTOMATED VULNERABILITY SCANNING
	Description
	Results

	AUTOMATED ANALYSIS
	Description
	Results

	UNSAFE RUST CODE DETECTION
	Description
	Results

