
Bedrock IOTX Liquid Staking Explained

Bedrock Team

September 30, 2023

Abstract

Staking in the crypto economy is gaining substantial momentum as Proof of Stake (POS)
emerges as the prevailing consensus mechanism in the blockchain industry. In the IoTeX Network,
token-holders can stake IOTX and vote for Delegates to support and expand the network. This
not only strengthens the overall security of the IoTeX Network, but also provides token-holders
with significant returns on their staked IOTX. Various staking methods are available, including
Solo Staking, SaaS Staking, and staking via centralized exchanges. Each method has its own
limitations. To improve the user experience on the IoTeX network, we have launched the Bedrock
Liquid Staking (IoTeX) project.

1 Introduction

1.1 IoTeX Network

IoTeX is a blockchain network that employs Roll-DPoS consensus mechanism, which enhances the
decentralization and security of the IoTeX Network without compromising performance by randomly
selecting 24 out of the top 36 community-voted Delegates to mine every hour.

1.2 Staking Parameters

Before we start Staking on the IoTeX Network, several factors need to be taken into account. We will
briefly discuss these parameters from the network’s perspective.

• Delegate: More than 70 delegates each make a unique contribution to IoTeX and offer different
reward amounts to voters. You have the option to change your vote to another delegate whenever
you wish.

• Amount: This determines the amount of IOTX you wish to stake/vote. You can append IOTX
to an existing bucket after your initial vote, provided the stake lock is activated. The more IOTX
you stake, the greater your rewards will be.

• Stake Duration: This is the amount of time you wish to stake your coins (between 0-1050 days).
The longer you stake, the more bonus votes or rewards you receive. The duration of your stake
is essentially a countdown timer indicating when you can unstake your IOTX. Once the duration
reaches zero, you have the option to unstake your deposit. Please be aware that after the stake
duration has expired, the unstaking process requires an additional 3 days. Following this, you
may withdraw your coins to your wallet.

• Stake-Lock(Auto-Stake): When you turn stake-lock ON, you pause your lock duration countdown
until you decide to turn it OFF, and the countdown resumes. The advantage of stake-lock is that
it allows you to earn additional bonus votes/rewards while activated. Once you deactivate the
stake-lock, your stake duration will continue to count down to zero. Please note, if you reactivate
the stake-lock at any point during your countdown, your stake duration will reset to the original
period you had initially set.

1

https://iotex.io/
https://res.cloudinary.com/dokc3pa1x/image/upload/v1559623484/Research%20Paper/Academic_Paper_Yellow_Paper.pdf?ref=iotex.io
https://stake.iotex.io/?ref=iotex.io
https://delegates.iotex.io/introduction/what-is-a-delegate


1.3 Liquid Staking

IIP-13(IoTeX Improvement Proposal 13) proposes to natively support the representation of staking
buckets as Non-fungible Tokens(NFT) and clears the way for Liquid Staking DApps and interest-
earning derivatives to flourish in the IoTeX ecosystem.

SystemStaking is the contract implemented for IIP-13. It issues an NFT token for each bucket
creation. Owner of the NFT token could update/transfer/unstake the corresponding bucket. The
buckets created in this contract will be counted in the staking protocol in iotex-core.

1.4 Universal IOTX

To enhance the liquid staking experience on the IoTeX network, our protocol issues a Universal
IOTX token, symbolized as uniIOTX, for staking services. Users will accrue uniIOTX when they
deposit the native token, IOTX, into our staking pool. The value of uniIOTX will increase over time
and provide liquidity, all without the need for intricate technical knowledge.

2 System Architecture

Figure 1 provides a depiction of the system’s high-level architecture and context. This project is built
on the IoTex network, involving various collaborative roles and modules. The smart contracts form the
core component of the entire system. This is a concise overview of the responsibilities of subsystems:

• Exchange Service: This is an additional service designed to boost liquidity. Our protocol stip-
ulates that users can only redeem IOTX in units of 1,000,000. However, we also provide an
essential liquidity pool, enabling users to exchange uniIOTX for IOTX at any time through an
eco-friendly trading platform such as a DEX. Please note that this service is currently in the
planning stage and will be available soon.

• UniIOTX DApp: This is a Web 3.0 decentralized application. It mainly includes features that
allow users to deposit, redeem, and claim IOTX for investment profits.

• Oracle System: This is an off-chain backend system. It primarily manages delegate and debt,
synchronizes rewards, and facilitates compounding for re-staking.

• On-Chain Contracts: Overall, our liquid staking protocol is executed through the joint effort
of four smart contracts: SystemStaking, UniIOTX, IOTXClear, and IOTXStaking. IOTXStak-
ing relies on the other three contracts, while the IOTXClear contract solely depends on the
SystemStaking contracts.

– SystemStaking: This is the official IoTeX staking contract, a standard ERC-721 smart con-
tract that facilitates bucket management. It inherently generates an NFT token for each
bucket created and destroys the NFT token when its corresponding bucket is withdrawn.

– UniIOTX: A standard ERC-20 smart contract which supports Batch Transfer. It generates
uniIOTX when users deposit IOTX or when the manager fee is withdrawn, and eliminates
uniIOTX when users redeem IOTX. Additionally, users can transfer or authorize the spend-
ing of uniIOTX to other users.

– IOTXStaking: A smart contract designed to accept user-transferred value for an automatic
compounding staking service. It involves the distribution of staking rewards and repre-
sents the initial stage of the business lifecycle. Furthermore, it transfers the relevant NFT
to the IOTXClear contract for a new debt record upon receiving users’ redemption requests.

– IOTXClear: A smart contract designed to manage debt. It systematically organizes debt
records based on users’ redemption requests and adheres to a First-In-First-Out (FIFO)
order for payment. Furthermore, it also keeps track of the yield rewards during the unstaking
phase.

2

https://community.iotex.io/t/iip-13-represent-staking-buckets-as-non-fungible-tokens/10262?ref=iotex.io
https://docs.lido.fi/?ref=iotex.io#liquid-staking
https://github.com/iotexproject/iip13-contracts
https://app.bedrock.technology/uniiotx
https://iotexscan.io/address/io1drde9f483guaetl3w3w6n6y7yv80f8fael7qme
https://eips.ethereum.org/EIPS/eip-721
https://iotexscan.io/address/0x236f8c0a61dA474dB21B693fB2ea7AAB0c803894#transactions
https://eips.ethereum.org/EIPS/eip-20
https://ethereum.org/se/developers/docs/standards/tokens/erc-1155/#batch_transfers
https://iotexscan.io/address/0x2c914Ba874D94090Ba0E6F56790bb8Eb6D4C7e5f#transactions
https://iotexscan.io/address/0x7AD800771743F4e29f55235A55895273035FB546#transactions


Figure 1: System Architecture of Bedrock Liquid Staking (IoTeX)

3 Business Lifecycle

Figure 2 illustrates the typical business lifecycle. The lifecycle starts with a user deposit and ends with
a user claim, which corresponds to the staking and unstaking phases respectively.
From an investor’s viewpoint, there are three primary business scenarios:

• Depositing IOTX: Deposit IOTX to mint uniIOTX and earn automatically compounded revenue.

• Redeeming IOTX: Redeem IOTX and burn uniIOTX, then claim the corresponding principal
and rewards.

• Trading IOTX: Exchange uniIOTX for IOTX using an eco-friendly trading platform such as a
DEX.

3



deposit compound

stake

redeemwithdraw

claim

Figure 2: Business Lifecycle of Bedrock Liquid Staking (IoTeX)

4 Business Rules

We previously discussed the staking parameters in subsection 1.2, which must be considered. The
following are the essential business rules tailored for our Bedrock Liquid Staking (IoTeX) project.

1. Staking Buckets: There is no limit to the amount of IOTX you can deposit. The available
bucket types for staking, irrespective of the IOTX deposit amount, are as follows: {Amount:
10000/100000/1000000 IOTX, Duration: 91 Days}. During the staking process, an equivalent
amount of uniIOTX will be generated based on the current exchange ratio.

2. Staking Order: The total pending IOTX will be staked in descending order, starting from the
1000000-bucket, down to the 100000-bucket, and finally to the 10000-bucket. A global map
consisting of three queues is utilized to store all types of bucket/token IDs. These are represented
by Queue-3, Queue-2, and Queue-1, separately.

3. Bucket Merging: When the bucket count of a lower queue reaches 10, its buckets are merged into
a higher queue. Specifically, ten 10000-buckets in Queue-1 will be consolidated into a 100000-
bucket in Queue-2, and subsequently, ten 100000-buckets in Queue-2 will be combined to form a
1000000-bucket in Queue-3. Thus the length of Queue-3 can dynamically increase, whereas the
lengths of Queue-1 and Queue-2 always remain under 10.

4. Rewards Distribution: The Stake-Lock (Auto-Stake) feature is automatically activated for all
staked buckets during the staking phase. When users redeem IOTX, the corresponding buck-
ets transition to the unstaking phase for debt repayment. Users are rewarded in both phases,
managed separately by the IOTXStaking and IOTXClear contracts. During the staking phase,
rewards distributed to users from delegates are automatically reinvested into the total pending
IOTX. However, rewards earned during the unstaking phase can be claimed by users.

5. Debt Management: Before initiating a redemption request, users are required to authorize the
IOTXStaking contract to expend uniIOTX via the UniIOTX contract. Upon initiation of a
redemption request, the user’s uniIOTX will be immediately destroyed, and the corresponding
debt recorded, which will subsequently be paid in a First-In-First-Out (FIFO) order. The prin-
cipal of a debt can only be claimed after 94 days. However, any rewards distributed during this
unstaking phase can be claimed at any time.

6. Redemption Limit: Users can redeem IOTX only in units of 1000000. Therefore, only the largest
buckets containing 1000000 IOTX are eligible for debt payment withdrawal. However, users have
the option to exchange uniIOTX for IOTX using an ecological trading platform like a DEX. This
process also necessitates prior approval to expend uniIOTX via the UniIOTX contract.

4



7. Manager Fee: The manager’s fee will be computed and accumulated solely from the rewards
distributed during the staking phase. A fee manager will periodically withdraw this amount and
reinvest it into the total pending IOTX, which is earmarked for future re-staking. When the
manager’s fee is withdrawn, an equivalent amount of uniIOTX will be created for the designated
recipient, based on the current exchange rate.

8. Oracle Service: The Oracle system determines the most appropriate delegate, synchronizes re-
wards on a daily basis, and regularly initiates staking requests to re-stake pending user rewards.
Furthermore, it manages the debt payment process during the unstaking phase, which lasts as
long as 94 days.

9. NFT token: The SystemStaking contract will issue an NFT token for each bucket created during
the staking process. Once a redemption request is triggered, the ownership of the NFT token will
be transferred from the IOTXStaking contract to the IOTXClear contract. The SystemStaking
contract will ultimately withdraw/burn the NFT for debt payment during the unstaking phase.
Users remain unaware of the NFT tokens throughout the business lifecycle.

10. Exchange Ratio: All procedures concerning minting and burning uniIOTX must maintain the
current exchange ratio. This approach aims to prevent past investment activities from affecting
future ones unnecessarily, thereby deterring user arbitrage, and promoting fairness.

Proof. To prove ρ invariant and irrelevant of IOTX to stake, for CurrentReserve ∈ (0,+∞):

ρ =
TotalSupply

CurrentReserve
=

TotalSupply′ + ρ′ · IOTXsToStake

CurrentReserve′ + IOTXsToStake

as by definition:

ρ′ =
TotalSupply′

CurrentReserve′

we have:

ρ =
CurrentReserve′ · ρ′ + ρ′ · IOTXsToStake

CurrentReserve′ + IOTXsToStake
=

ρ′ · (CurrentReserve′ + IOTXsToStake)

CurrentReserve′ + IOTXsToStake

finally:

ρ = ρ′

5 Contract Interaction

Figure 3 demonstrates how message calls are created between contracts. Here is a corresponding
textual explanation:

• When an investor initiates IOTXStaking.deposit(), it activates UniIOTX.mint(), System-
Staking.stake(), and SystemStaking.merge(), provided the specified conditions are fulfilled.

• When an investor invokes IOTXStaking.redeem(), it sequentially triggersUniIOTX.burnFrom(),
SystemStaking.unlock(), SystemStaking.safeTransferFrom(), and IOTXClear.joinDebt().

• When the fee manager initiates triggers IOTXStaking.withdrawManagerFee(), it conse-
quently triggers UniIOTX.mint().

• When the Oracle invokes IOTXStaking.stake(), it subsequently triggers SystemStaking.stake(),
and SystemStaking.merge(), provided that the specified conditions are met.

5



• When the Oracle initiates either IOTXStaking.updateDelegates() or IOTXClear.updateDelegates(),
it subsequently triggers SystemStaking.changeDelegates().

• When the Oracle calls either IOTXClear.unstake() or IOTXClear.payDebts(), it subse-
quently triggers SystemStaking.unstake() or SystemStaking.withdraw(), respectively.

Figure 3: Contract Interaction of Bedrock Liquid Staking (IoTeX)

6 Conclusion

Bedrock Liquid Staking (IoTeX) provides all users the opportunity to earn rewards on any amount of
IOTX, accruing benefits over time. This allows retail users to participate in maintaining the IoTeX
network, functioning similarly to an inclusive financial system in the real world. Additionally, stakers
have the ability to hedge their uniIOTX tokens to prevent financial loss.

The overall design of this liquid staking protocol prioritizes fund security when using the funds to
earn rewards. The source code and architecture have been made publicly available. Furthermore, the
source code has undergone an audit by PeckShield.

6

https://github.com/RockX-SG/uniiotx/blob/main/docs/PeckShield-Audit-Report-Bedrock-v1.0.pdf


A Terminology

IOTX 1 · IOTX ≡ 1018

TotalSupply The total amount of uniIOTX being supplied.

TotalPending The total amount of IOTX awaiting staking.

TotalStaked The total amount of IOTX being staked.

TotalDebts The total amount of IOTX awaiting debt repayment.

CurrentReserve The total amount of IOTX under management, given as:

CurrentReserve = TotalPending + TotalStaked

ExchangeRatio Defined as symbol ρ of uniIOTX to IOTX, given as:

ρ =

{
TotalSupply

CurrentReserve CurrentReserve ∈ (0,+∞)

1 CurrentReserve = 0
(1)

normally: ρ ≤ 1.0

ManagerFeeShare The share of the manager fee, represented as 1 in 1000, managerFeeShares ∈
[0, 1000]

GlobalDelegate The address for the global delegate for the upcoming staking requests.

StakeAmounts The geometric series of legal IOTX amounts for all staking requests, given as:

StakeAmounts ≡ {10000, 100000, 1000000}

RedeemAmountBase The unit amount of IOTX for redemption request, given as:

RedeemAmountBase ≡ 1000000

StakeDuration The staking duration of 91 days for all staking requests, given as:

StakeDuration ≡ 1572480

AccountedManagerReward The accumulated IOTX rewards distributed for manager fee during
the staking phase.

AccountedUserReward The accumulated IOTX rewards distributed for users during the staking
phase.

AccountedStakingReward The synchronized IOTX rewards produced by delegates during the stak-
ing phase, give as:

AccountedStakingReward = AccountedUserReward+AccountedManagerReward

CompoundedAmount The total amount of IOTX automatically compounded for future re-staking
during the staking phase, given as:

CompoundedAmount = AccountedUserReward

DebtAmountBase The unit amount of IOTX for debt record, given as:

DebtAmountBase = RedeemAmountBase

ThisBalance The actual IOTX amount that is being controlled by the contract account.

7



AccountedBalance The synchronized IOTX amount assigned from ThisBalance, given as:

AccountedBalance = ThisBalance

IncrReward The total amount of increased IOTX reward during the unstaking phase, given as:

IncrReward = ThisBalance−AccountedBalance

RewardRate The monotonically increasing shared reward metric during the unstaking phase, given
as:

RewardRate+=

{
IncrReward
TotalDebts TotalDebts ∈ (0,+∞)

0 TotalDebts = 0
(2)

B References

• The IoTeX Network

• Roll-DPoS Consensus Mechanism

• Staking on IoTeX

• Delegates on IoTeX

• IIP-13: Represent Staking Buckets As Non-fungible Tokens

• SystemStaking Contract for IIP-13

• Liquid Staking Explained by Lido

• Design of Bedrock Liquid Staking Contracts on IoTeX

• Smart Contract Audit Report for Bedrock Liquid Staking (IoTeX)

• Bedrock UniIOTX Web 3.0 DApp

• SystemStaking Smart Contract

• UniIOTX Smart Contract

• IOTXStaking Smart Contract

• IOTXClear Smart Contract

8

https://iotex.io/
https://res.cloudinary.com/dokc3pa1x/image/upload/v1559623484/Research%20Paper/Academic_Paper_Yellow_Paper.pdf?ref=iotex.io
https://stake.iotex.io/?ref=iotex.io
https://delegates.iotex.io/introduction/what-is-a-delegate
https://community.iotex.io/t/iip-13-represent-staking-buckets-as-non-fungible-tokens/10262?ref=iotex.io
https://github.com/iotexproject/iip13-contracts
https://docs.lido.fi/?ref=iotex.io#liquid-staking
https://github.com/RockX-SG/uniiotx/blob/main/docs/system_design.md
https://github.com/RockX-SG/uniiotx/blob/main/docs/PeckShield-Audit-Report-Bedrock-v1.0.pdf
https://app.bedrock.technology/uniiotx
https://iotexscan.io/address/io1drde9f483guaetl3w3w6n6y7yv80f8fael7qme
https://iotexscan.io/address/0x236f8c0a61dA474dB21B693fB2ea7AAB0c803894#transactions
https://iotexscan.io/address/0x2c914Ba874D94090Ba0E6F56790bb8Eb6D4C7e5f#transactions
https://iotexscan.io/address/0x7AD800771743F4e29f55235A55895273035FB546#transactions

	Introduction
	IoTeX Network
	Staking Parameters
	Liquid Staking
	Universal IOTX

	System Architecture
	Business Lifecycle
	Business Rules
	Contract Interaction
	Conclusion
	Terminology
	References

